Biogeochemistry

, 89:329

Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica

  • Kristell Hergoualc’h
  • Ute Skiba
  • Jean-Michel Harmand
  • Catherine Hénault
Original Paper

Abstract

The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.

Keywords

Agroforestry CH4 CO2 Mineralization N2Water-filled pore space (WFPS) 

References

  1. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods, 2nd edn. CAB International, UKGoogle Scholar
  2. Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net N mineralization and nitrification in the presence and absence of shade trees. Agric Ecosyst Environ 48:107–113. doi:10.1016/0167-8809(94)90081-7 CrossRefGoogle Scholar
  3. Baumert K, Herzog T, Pershing J (2005) Navigating the numbers: greenhouse gas data and international climate policy. World Resources Institute (WRI), USAGoogle Scholar
  4. Bouwman AF, Boumans LJM, Batjes NH (2002) Modelling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16(4), 1080. doi:10.1029/2001GB001812
  5. Campos A (2006) Response of soil surface CO2-C flux to land use changes in a tropical cloud forest (Mexico). For Ecol Manage 234:305–312. doi:10.1016/j.foreco.2006.07.012 CrossRefGoogle Scholar
  6. Cattânio JH, Davidson EA, Nepstad DC et al (2002) Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO2, CH4, N2O, and NO in eastern Amazonia. Biol Fertil Soils 36:102–108. doi:10.1007/s00374-002-0517-x CrossRefGoogle Scholar
  7. Chapuis-Lardy L, Wrage N, Metay A et al (2007) Soils, a sink for N2O? A review. Glob Change Biol 13:1–17. doi:10.1111/j.1365-2486.2006.01280.x CrossRefGoogle Scholar
  8. Chu H, Hosen Y, Yagi K (2007) NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil Biol Biochem 39:330–339. doi:10.1016/j.soilbio.2006.08.003 CrossRefGoogle Scholar
  9. Crouzet G (2004) Dynamique de l’azote dans des plantations agroforestières à café au Costa Rica (Distribution de racines fines et influence de l’arbre et de la fertilisation sur la lixiviation des nitrates). Dissertation, Centre National d’Études Agronomiques des Régions Chaudes (CNEARC)Google Scholar
  10. Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and Halomethanes. Am. Soc. Microbiol Press, Washington, DCGoogle Scholar
  11. Davidson EA, Verchot L, Cattânio JH et al (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917 CrossRefGoogle Scholar
  12. Dioniso L (2007) Lixiviación y mineralización de nitrógeno amoniacal y nítrico en café con manejo convencional y orgánico, cada uno bajo sombra y a pleno sol, en San Pedro de Barva, Heredia. Dissertation, Universidad Nacional de Costa RicaGoogle Scholar
  13. FAO (2005) FAOSTAT data. http://faostat.fao.org. Accessed 26 Sept 2006
  14. Grimaldi M, Schroth G, Teixeira WG et al (2003) Soil structure. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility concepts and research methods. CABI Publishing, BristolGoogle Scholar
  15. Harmand J-M, Avila H, Dambrine E et al (2007a) Nitrogen dynamics, soil nitrate retention and nitrate water contamination in a coffea arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139. doi:10.1007/s10533-007-9120-4 CrossRefGoogle Scholar
  16. Harmand JM, Chaves V, Cannavo P et al (2007b) Nitrogen dynamics (coffee productivity, nitrate leaching and N2O emissions) in Coffea arabica systems in Costa Rica according to edaphic conditions, fertilization and shade management. Paper presented at the 2nd international symposium on multi-strata agroforestry systems with perennial crops, CATIE, Turrialba, Costa Rica, 17–21 September 2007Google Scholar
  17. Henríquez C, Cabalceta G (1999) Guía práctica para el estudio introductorio de los suelos con un enfoque agrícola. ACCS (Asociación Costarricense de la Ciencia del Suelo), San JoséGoogle Scholar
  18. Hergoualc’h K, Skiba U, Harmand JM et al (2007) Processes responsible for the nitrous oxide emission from a Costa Rican Andosol under a coffee agroforestry plantation. Biol Fertil Soils 43:787–795. doi:10.1007/s00374-007-0168-z CrossRefGoogle Scholar
  19. Hütsch B, Webster CP, Powlin DS (1993) Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment. Soil Biol Biochem 25:1307–1315. doi:10.1016/0038-0717(93)90045-D CrossRefGoogle Scholar
  20. InfoStat (2004) InfoStat versión 2004. FCA, Universidad Nacional de CórdobaGoogle Scholar
  21. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IGES), Hayama, JapanGoogle Scholar
  22. Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Glob Biogeochem Cycles 16(3) 10.1029/2001GB001614
  23. IUSS (International Union of Soil Sciences) Working group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports N103. FAO (Food and Agriculture Organization of the United Nations), RomeGoogle Scholar
  24. Keller M, Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob Biogeochem Cycles 8:399–409. doi:10.1029/94GB01660 CrossRefGoogle Scholar
  25. Khalil MI, Baggs EM (2005) CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem 37:1785–1794. doi:10.1016/j.soilbio.2005.02.012 CrossRefGoogle Scholar
  26. Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropic of Queensland, Australia. Soil Biol Biochem 34:975–987. doi:10.1016/S0038-0717(02)00031-7 CrossRefGoogle Scholar
  27. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi:10.1016/S1164-5563(01)01067-6 CrossRefGoogle Scholar
  28. Linn D, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non tilled soils. Soil Sci Soc Am 48:1267–1272Google Scholar
  29. Mata RA, Ramírez JE (1999) Estudio de caracterización de suelos y su relación con el manejo del cultivo de café en la provincia de Heredia. ICAFE, San JoséGoogle Scholar
  30. Montenegro J, Abarca S (2001) Importancia del sector agropecuario costarricense en la mitigación del calentamiento global. Ministerio de Agricultura y Ganadería, Instituto Meteorológico Nacional, San JoséGoogle Scholar
  31. Mosier AR, Delgado JA (1997) Methane and nitrous oxide fluxes in grasslands in Western Puerto Rico. Chemosphere 35:2059–2082. doi:10.1016/S0045-6535(97)00231-2 CrossRefGoogle Scholar
  32. Mulvaney RL (1996) Nitrogen inorganic forms. In: Sparks DL (ed) Methods of soil analysis, Part 3: chemical methods, 3rd edn. SSSA and ASA, Madison, WIGoogle Scholar
  33. Mutuo PK, Cadisch G, Albrecht A et al (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54. doi:10.1007/s10705-004-5285-6 CrossRefGoogle Scholar
  34. Palm C, Alegre J, Arevalo L et al (2002) Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001855
  35. Raich J, Schlesinger W (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99Google Scholar
  36. Reynolds-Vargas JS, Richter DD, Bornemisza E (1994) Environmental impacts of nitrification and nitrate adsorption in fertilized Andisols in the Valle Central of Costa Rica. Soil Sci 157:289–299CrossRefGoogle Scholar
  37. Rochette P, Janzen H (2005) Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst 73:171–179. doi:10.1007/s10705-005-0357-9 CrossRefGoogle Scholar
  38. Rogner HH, Zhou D, Bradley R et al (2007) Introduction. In: Metz B, Davidson OR, Bosch PR (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  39. Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27. doi:10.1007/s10533-004-5167-7 CrossRefGoogle Scholar
  40. Siles P (2007) Hydrological processes (water use and balance) in a coffee (Coffea arabica) monoculture and a coffee agroforestry plantation shaded by Inga densiflora in Costa Rica. Dissertation, Université Henry Poincaré, NancyGoogle Scholar
  41. Smith KA, Ball T, Conen F et al (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.1046/j.1351-0754.2003.0567.x CrossRefGoogle Scholar
  42. Stehfest E, Bouwman L (2006) N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global annual emissions. Nutr Cycl Agroecosyst 74:207–228. doi:10.1007/s10705-006-9000-7 CrossRefGoogle Scholar
  43. Steudler PA, Melillo JM, Feigl BJ et al (1996) Consequence of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J Geophys Res 101:18547–18554. doi:10.1029/96JD01551 CrossRefGoogle Scholar
  44. Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis, Part 3: chemical methods, 3rd edn. SSSA and ASA, Madison, WIGoogle Scholar
  45. Vaast P, Harmand JM (2002) Importance des systèmes agroforestiers dans la production de café en Amérique centrale et au Mexique. In: CIRAD (ed) Recherche et caféiculture, Montpellier, FranceGoogle Scholar
  46. Vaast P, van Kanten R, Siles P et al (2008) Biophysical interactions between timber trees and arabica coffee in suboptimal conditions of Central America. In: Shibu J, Gordon AM (eds) Toward agroforestry design: an ecological approach. Springer, DordrechtGoogle Scholar
  47. Veldkamp E, Keller M (1997) Nitrogen oxide emissions from a banana plantation in the humid tropics. J Geophys Res 102:15889–15898. doi:10.1029/97JD00767 CrossRefGoogle Scholar
  48. Veldkamp E, Keller M, Nuñez M (1998) Effect of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica. Glob Biogeochem Cycles 12:71–79. doi:10.1029/97GB02730 CrossRefGoogle Scholar
  49. Verchot LV, Davidson EA, Cattânio JH et al (2000) Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems (NY, Print) 3:41–56. doi:10.1007/s100210000009 CrossRefGoogle Scholar
  50. Verchot LV, Hutabarat L, Hairiah K et al (2006) Nitrogen availability and soil N2O emissions following conversion of forests to coffee in southern Sumatra. Glob Biogeochem Cycles 20:GB4008. doi:10.1029/2005GB002469 CrossRefGoogle Scholar
  51. Verchot LV, Brienza S Jr, Costa de Oliveira V et al (2008) Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in eastern Amazonia. Agric Ecosyst Environ 126:113–121. doi:10.1016/j.agee.2008.01.012 CrossRefGoogle Scholar
  52. Wrage N, Velthof GL, Van Beusichem ML et al (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi:10.1016/S0038-0717(01)00096-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kristell Hergoualc’h
    • 1
    • 2
    • 3
  • Ute Skiba
    • 4
  • Jean-Michel Harmand
    • 1
  • Catherine Hénault
    • 5
  1. 1.Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD). UR Ecosystèmes de Plantations, s/c UR SeqBio-IRD (SupAgro)Montpellier Cedex 01France
  2. 2.Departamento de Agricultura y AgroforesteriaCentro Agronómico Tropical de Investigación y Enseñanza (CATIE)TurrialbaCosta Rica
  3. 3.CIFOR ENVBogorIndonesia
  4. 4.Center of Ecology and Hydrology (CEH)PenicuikScotland, UK
  5. 5.Institut National de Recherche en Agronomie (INRA), UMR Microbiologie et Géochimie des SolsDijon CedexFrance

Personalised recommendations