Advertisement

Biogeochemistry

, Volume 89, Issue 3, pp 309–327 | Cite as

A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils

  • Jonathan SandermanEmail author
  • Ronald Amundson
Original Paper

Abstract

For soil carbon to be effectively sequestered beyond a timescale of a few decades, this carbon must become incorporated into passive reservoirs or greater depths, yet the actual mechanisms by which this occurs is at best poorly known. In this study, we quantified the magnitude of dissolved organic carbon (DOC) leaching and subsequent retention in soils of a coniferous forest and a coastal prairie ecosystem. Despite small annual losses of DOC relative to respiratory losses, DOC leaching plays a significant role in transporting C from surface horizons and stabilizing it within the mineral soil. We found that DOC movement into the mineral soil constitutes 22% of the annual C inputs below 40 cm in a coniferous forest, whereas only 2% of the C inputs below 20 cm in a prairie soil could be accounted for by this process. In line with these C input estimates, we calculated advective transport velocities of 1.05 and 0.45 mm year−1 for the forested and prairie sites, respectively. Radiocarbon measurements of field-collected DOC interpreted with a basic transport-turnover model indicated that DOC which was transported and subsequently absorbed had a mean residence time of 90–150 years. Given these residence times, the process of DOC movement and retention is responsible for 20% of the total mineral soil C stock to 1 m in the forest soil and 9% in the prairie soil. These results provide quantitative data confirming differences in C cycles in forests and grasslands, and suggest the need for incorporating a better mechanistic understanding of soil C transport, storage and turnover processes into both local and regional C cycle models.

Keywords

Carbon sequestration Dissolved organic carbon Mean residence time Radiocarbon Soil organic matter Transport modeling 

Notes

Acknowledgments

We thank K. Lohse for integral help with the bioavailability experiments; the USFS Redwood Sciences Laboratory for access to and logistical support at Caspar Creek; the National Park Service for access to Tennessee Valley; M. Mangahas for assistance in the field; and J. Southon and G. dos Santos at the Keck Center for Carbon Accelerator Mass Spectrometry for help with radiocarbon analyses. This work was funded with a grant to R. Amundson by the Kearney Foundation of Soil Science.

References

  1. Allen RK, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guideline for computing crop water requirements. FAO irrigation and drainage paper no. 56. United Nations Food and Agricultural Organization, RomeGoogle Scholar
  2. Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. J Hydrol 261:173–192. doi: 10.1016/S0022-1694(02)00005-7 CrossRefGoogle Scholar
  3. Baisden WT, Parfitt RL (2007) Bomb 14C enrichment indicates decadal C pool in deep soil? Biogeochemistry 85:59–68. doi: 10.1007/s10533-007-9101-7 CrossRefGoogle Scholar
  4. Baisden WT, Amundson R, Cook AC, Brenner DL (2002a) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cycles 16:1117. doi: 10.1029/2001GB001822 CrossRefGoogle Scholar
  5. Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW (2002b) A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Global Biogeochem Cycles 16:1135. doi: 10.1029/2001GB001823 CrossRefGoogle Scholar
  6. Cain WF, Suess HE (1976) Carbon 14 in tree rings. J Geophys Res-Oceans Atmospheres 81:3688–3694. doi: 10.1029/JC081i021p03688 CrossRefGoogle Scholar
  7. Cassel DK, Klute A (1986) Water potential: tensiometry. In: Klute A (ed) Methods of soil analysis: part 1—physical and mineralogical methods. Soil Science Society of America, Madison, pp 563–596Google Scholar
  8. Chapman HD (1965) Cation-exchange capacity. In: Black CA, Evans DD, White JL, Ensminger LE, Clark FE (eds) Methods of soil analysis. Part 2. American Society of Agronomy, Madison, pp 899–904Google Scholar
  9. Ciglasch H, Lilienfein J, Kaiser K, Wilcke W (2004) Dissolved organic matter under native cerrado and pinus caribaea plantations in the Brazilian savanna. Biogeochemistry 67:157–182. doi: 10.1023/B:BIOG.0000015281.74705.f8 CrossRefGoogle Scholar
  10. CIMIS (2007) California Irrigation Management Information System. http://wwwcimis.water.ca.gov/cimis/welcome.jsp. Cited 16 February 2007
  11. Dalva M, Moore TR (1991) Sources and sinks of dissolved organic-carbon in a forested swamp catchment. Biogeochemistry 15:1–19. doi: 10.1007/BF00002806 CrossRefGoogle Scholar
  12. Dorr H, Munnich KO (1989) Downward movement of soil organic-matter and its influence on trace-element transport (Pb-210, Cs-137) in the soil. Radiocarbon 31:655–663Google Scholar
  13. Elzein A, Balesdent J (1995) Mechanistic simulation of vertical-distribution of carbon concentrations and residence times in soils. Soil Sci Soc Am J 59:1328–1335Google Scholar
  14. Ewing SA, Sanderman J, Baisden WT, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. J Geophys Res-Biogeosci 111:G03012. doi: 10.1029/2006JG000174 CrossRefGoogle Scholar
  15. Fierer N, Chadwick OA, Trumbore SE (2005) Production of CO2 in soil profiles of a California annual grassland. Ecosystems (NY, Print) 8:412–429. doi: 10.1007/s10021-003-0151-y CrossRefGoogle Scholar
  16. Froberg M, Berggren D, Bergkvist B, Bryant C, Mulder J (2006) Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry 77:1–23. doi: 10.1007/s10533-004-0564-5 CrossRefGoogle Scholar
  17. Froberg M, Kleja DB, Hagedorn F (2007) The contribution of fresh litter to dissolved organic carbon leached from a coniferous forest floor. Eur J Soil Sci 58:108–114. doi: 10.1111/j.1365-2389.2006.00812.x CrossRefGoogle Scholar
  18. Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern US measured by radiocarbon. Oecologia 129:420–429Google Scholar
  19. Gee GW, Bauder JW (1986) Particle-size analysis. In: Black WC (ed) Methods of soil analysis. Part 1. American Society of Agronomy, Madison, pp 398–406Google Scholar
  20. Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310. doi: 10.1016/S0016-7061(02)00366-X CrossRefGoogle Scholar
  21. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi: 10.1023/A:1006244819642 CrossRefGoogle Scholar
  22. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD et al (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302CrossRefGoogle Scholar
  23. Harr RD (1977) Water flux in soil and subsoil on a steep forested slope. J Hydrol (Amst) 33:37–58. doi: 10.1016/0022-1694(77)90097-X CrossRefGoogle Scholar
  24. Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1997) The soil production function and landscape equilibrium. Nature 388:358–361. doi: 10.1038/41056 CrossRefGoogle Scholar
  25. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi: 10.1007/BF00333714 CrossRefGoogle Scholar
  26. Jandl R, Sollins P (1997) Water extractable soil carbon in relation to the belowground carbon cycle. Biol Fertil Soils 25:196–201. doi: 10.1007/s003740050303 CrossRefGoogle Scholar
  27. Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 CrossRefGoogle Scholar
  28. John B, Ludwig B, Flessa H (2003) Carbon dynamics determined by natural C-13 abundance in microcosm experiments with soils from long-term maize and rye monocultures. Soil Biol Biochem 35:1193–1202. doi: 10.1016/S0038-0717(03)00180-9 CrossRefGoogle Scholar
  29. Jones DL, Edwards AC (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30:1895–1902. doi: 10.1016/S0038-0717(98)00060-1 CrossRefGoogle Scholar
  30. Kahle M, Kleber M, Jahn R (2003) Retention of dissolved organic matter by illitic soils and clay fractions: influence of mineral phase properties. J Plant Nutr Soil Sci-Z Pflanzenernahrung Bodenkunde 166:737–741. doi: 10.1002/jpln.200321125 CrossRefGoogle Scholar
  31. Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725. doi: 10.1016/S0146-6380(00)00046-2 CrossRefGoogle Scholar
  32. Kaiser K, Zech W (1998) Rates of dissolved organic matter release and sorption in forest soils. Soil Sci 163:714–725. doi: 10.1097/00010694-199809000-00005 CrossRefGoogle Scholar
  33. Kaiser K, Guggenberger G, Zech W (1996) Sorption of DOM and DOM fractions to forest soils. Geoderma 74:281–303. doi: 10.1016/S0016-7061(96)00071-7 CrossRefGoogle Scholar
  34. Kaiser K, Mikutta R, Guggenberger G (2007) Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Sci Soc Am J 71:711–719. doi: 10.2136/sssaj2006.0189 CrossRefGoogle Scholar
  35. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304. doi: 10.1097/00010694-200004000-00001 CrossRefGoogle Scholar
  36. Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331. doi: 10.1016/j.soilbio.2004.11.028 CrossRefGoogle Scholar
  37. Kalbitz K, Meyer A, Yang R, Gerstberger P (2007) Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 86:301–318. doi: 10.1007/s10533-007-9161-8 CrossRefGoogle Scholar
  38. Karltun E, Harrison AF, Alriksson A, Bryant C, Garnett MH, Olsson MT (2005) Old organic carbon in soil solution DOC after afforestation—evidence from C-14 analysis. Geoderma 127:188–195. doi: 10.1016/j.geoderma.2004.12.008 CrossRefGoogle Scholar
  39. Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geology 35:243–246. doi: 10.1130/G23355A.1 CrossRefGoogle Scholar
  40. Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725Google Scholar
  41. Levin I, Kromer B (1997) Twenty years of atmospheric (CO2)-C-14 observations at schauinsland station, Germany. Radiocarbon 39:205–218Google Scholar
  42. Levin I, Kromer B (2004) The tropospheric (CO2)-C-14 level in mid-latitudes of the northern hemisphere (1959–2003). Radiocarbon 46:1261–1272Google Scholar
  43. Lohse KA, Matson PA (2005) Consequences of nitrogen additions for soil processes and soil solution losses from wet tropical forests. Ecol Appl 15:1629–1648. doi: 10.1890/03-5421 CrossRefGoogle Scholar
  44. Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235. doi: 10.1016/S0016-7061(02)00362-2 CrossRefGoogle Scholar
  45. Masiello CA, Chadwick OA, Southon J, Torn MS, Harden JW (2004) Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochem Cycles 18:GB4023. doi: 10.1029/2004GB002219 CrossRefGoogle Scholar
  46. McGuire KJ, DeWalle DR, Gburek WJ (2002) Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J Hydrol (Amst) 261:132–149. doi: 10.1016/S0022-1694(02)00006-9 CrossRefGoogle Scholar
  47. McKeague JA, Day DH (1966) Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can J Soil Sci 46:13–16CrossRefGoogle Scholar
  48. McKeague JA, Brydon JE, Miles NM (1971) Differentiation of forms of extractable iron and aluminum in soils. Soil Sci Soc Am Proc 35:33–37Google Scholar
  49. Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52:173–205. doi: 10.1023/A:1006441620810 CrossRefGoogle Scholar
  50. Michalzik B, Tipping E, Mulder J, Gallardo Lancho JF, Matzner E, Bryant CL, Clarke N, Lofts S, Vincente Esteban MA (2003) Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66:241–264CrossRefGoogle Scholar
  51. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi: 10.1007/s10533-005-0712-6 CrossRefGoogle Scholar
  52. Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71:2569–2590. doi: 10.1016/j.gca.2007.03.002 CrossRefGoogle Scholar
  53. Millington R, Shearer RC (1971) Diffusion in aggregated porous media. Soil Sci 111:372–380CrossRefGoogle Scholar
  54. Minagawa M, Winter DA, Kaplan IR (1984) Comparison of kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal Chem 56:1859–1961. doi: 10.1021/ac00275a023 CrossRefGoogle Scholar
  55. Moore TR, DeSouza W, Koprivnjak JF (1992) Controls on the sorption of dissolved organic-carbon by soils. Soil Sci 154:120–129. doi: 10.1097/00010694-199208000-00005 CrossRefGoogle Scholar
  56. Nadelhoffer KJ, Reich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147. doi: 10.2307/1940664 CrossRefGoogle Scholar
  57. NCDC (2007) Climatic data summary for station #4500 Kentfield, CA. http://www.ncdc.noaa.gov/oa/ncdc.html. Cited 15 April 2007
  58. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems (NY, Print) 4:29–48. doi: 10.1007/s100210000058 CrossRefGoogle Scholar
  59. Nodvin SC, Driscoll CT, Likens GE (1986) Simple partitioning of anions and dissolved organic-carbon in a forest soil. Soil Sci 142:27–35CrossRefGoogle Scholar
  60. O’Brien BJ, Stout JD (1978) Movement and turnover of soil organic-matter as indicated by carbon isotope measurements. Soil Biol Biochem 10:309–317. doi: 10.1016/0038-0717(78)90028-7 CrossRefGoogle Scholar
  61. Qualls RG (2005) Biodegradability of dissolved organic from decomposing fractions of carbon leached leaf litter. Environ Sci Technol 39:1616–1622. doi: 10.1021/es049090o CrossRefGoogle Scholar
  62. Qualls RG, Haines BL (1992a) Biodegradability of dissolved organic-matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586Google Scholar
  63. Qualls RG, Haines BL (1992b) Measuring adsorption-isotherms using continuous, unsaturated flow through intact soil cores. Soil Sci Soc Am J 56:456–460Google Scholar
  64. Sanderman J (2007) The role of dissolved organic carbon in the terrestrial carbon cycle. Dissertation, University of California, BerkeleyGoogle Scholar
  65. Sanderman J, Baldock JA, Amundson R (2008) Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry. doi: 10.1007/s10533-008-9211-x
  66. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578. doi: 10.2136/sssaj2005.0117 CrossRefGoogle Scholar
  67. Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036Google Scholar
  68. Schaetzl RJ (2002) A spodosol-entison transition in northern Michigan. Soil Sci Soc Am J 66:1272–1284Google Scholar
  69. Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702. doi: 10.2307/1941147 CrossRefGoogle Scholar
  70. Spittlehouse DL, Black T (1981) Growing season water balance model applied to two Douglas fir stands. Water Resour Res 17:1651–1656. doi: 10.1029/WR017i006p01651 CrossRefGoogle Scholar
  71. Stuiver M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19:355–363Google Scholar
  72. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173. doi: 10.1038/38260 CrossRefGoogle Scholar
  73. Townsend AR, Vitousek PM, Desmarais DJ, Tharpe A (1997) Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry 38:1–17. doi: 10.1023/A:1017942918708 CrossRefGoogle Scholar
  74. Uselman SM, Qualls RG, Lilienfein J (2007) Fine root production across a primary successional ecosystem chronosequence at Mt. Shasta, California. Ecosystems (NY, Print) 10:703–717. doi: 10.1007/s10021-007-9045-8 CrossRefGoogle Scholar
  75. van Hees PAW, Vinogradoff SI, Edwards AC, Godbold DL, Jones DL (2003) Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates. Soil Biol Biochem 35:1015–1026. doi: 10.1016/S0038-0717(03)00144-5 CrossRefGoogle Scholar
  76. Vance GF, Mokma DL, Boyd SA (1986) Phenolic compounds in soils of hydrosequences and developmental sequences of spodosols. Soil Sci Soc Am J 50:992–996Google Scholar
  77. Vogel JS, Southon JR, Nelson DE, Brown TA (1984) Performance of catalytically condensed carbon for use in accelerator mass-spectrometry. Nucl Instrum Methods Phys Res B 233:289–293. doi: 10.1016/0168-583X(84)90529-9 CrossRefGoogle Scholar
  78. Wang Y, Amundson R, Niu XF (2000) Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeochem Cycles 14:199–211. doi: 10.1029/1999GB900074 CrossRefGoogle Scholar
  79. Yano Y, McDowell WH, Kinner NE (1998) Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors. Soil Sci Soc Am J 62:1556–1564Google Scholar
  80. Yoo K, Amundson R, Heimsath AM, Dietrich WE (2005) Process-based model linking pocket gopher (thomomys bottae) activity to sediment transport and soil thickness. Geology 33:917–920. doi: 10.1130/G21831.1 CrossRefGoogle Scholar
  81. Ziemer RR technical coordinator (1998) Proceedings of the conference on coastal watersheds: the Caspar Creek story. 1998 May 6; Ukiah, CA. General Technical Report. PSW GTR-168. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Division of Ecosystem SciencesUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Earth and Planetary SciencesUniversity of CaliforniaSanta CruzUSA
  3. 3.AlbanyUSA

Personalised recommendations