Biogeochemistry

, Volume 89, Issue 2, pp 221–238

Sulphate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat

  • Melanie Beck
  • Olaf Dellwig
  • Jan M. Holstein
  • Maik Grunwald
  • Gerd Liebezeit
  • Bernhard Schnetger
  • Hans-Jürgen Brumsack
Original Paper

Abstract

This study addresses deep pore water chemistry in a permeable intertidal sand flat at the NW German coast. Sulphate, dissolved organic carbon (DOC), nutrients, and several terminal metabolic products were studied down to 5 m sediment depth. By extending the depth domain to several meters, insights into the functioning of deep sandy tidal flats were gained. Despite the dynamic sedimentological conditions in the study area, the general depth profiles obtained in the relatively young intertidal flat sediments of some metres depth are comparable to those determined in deep marine surface sediments. Besides diffusion and lithology which control pore water profiles in most marine surface sediments, biogeochemical processes are influenced by advection in the studied permeable intertidal flat sediments. This is supported by the model setup in which advection has to be implemented to reproduce pore water profiles. Water exchange at the sediment surface and in deeper sediment layers converts these permeable intertidal sediments into a “bio-reactor” where organic matter is recycled, and nutrients and DOC are released. At tidal flat margins, a hydraulic gradient is generated, which leads to water flow towards the creekbank. Deep nutrient-rich pore waters escaping at tidal flat margins during low tide presumably form a source of nutrients for the overlying water column in the study area. Significant correlations between the inorganic products of terminal metabolism (NH4+ and PO43−) and sulphate depletion suggest sulphate reduction to be the dominant pathway of anaerobic carbon remineralisation. Pore water concentrations of sulphate, ammonium, and phosphate were used to elucidate the composition of organic matter degraded in the sediment. Calculated C:N and C:P ratios were supported by model results.

Keywords

Intertidal flat Pore water Sulphate Nutrients DOC Geochemistry 

References

  1. Alperin MJ, Albert DB, Martens CS (1994) Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim Cosmochim Acta 58:4909–4930. doi:10.1016/0016-7037(94)90221-6 CrossRefGoogle Scholar
  2. Baldock JA, Masiello CA, Gélinas Y, Hedges JI (2004) Cycling an decomposition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64. doi:10.1016/j.marchem.2004.06.016 CrossRefGoogle Scholar
  3. Beck M, Dellwig O, Kolditz K, Freund H, Liebezeit G, Schnetger B et al (2007) In situ pore water sampling in deep intertidal flat sediments. Limnol Oceanogr Methods 5:136–144Google Scholar
  4. Beck M, Dellwig O, Liebezeit G, Schnetger B, Brumsack H-J (2008) Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediment. Estuar Coast Shelf Sci. doi:10.1016/j.ecss.2008.04.007
  5. Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M (2006a) Nutrient release from an exposed intertidal sand flat. Mar Ecol Prog Ser 316:35–51. doi:10.3354/meps316035 CrossRefGoogle Scholar
  6. Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M (2006b) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326:61–76. doi:10.3354/meps326061 CrossRefGoogle Scholar
  7. Böttcher ME, Rusch A, Höpner T, Brumsack H-J (1997) Stable sulfur isotope effects related to local intense sulfate reduction in a tidal sandflat (Southern North Sea): results from loading experiments. Isotopes Environ Health Stud 33:109–129. doi:10.1080/10256019708036345 CrossRefGoogle Scholar
  8. Böttcher ME, Oelschläger B, Höpner T, Brumsack H-J, Rullkötter J (1998) Sulfate reduction related to the early diagenetic degradation of organic matter and ‘black spot’ formation in tidal sandfalts of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org Geochem 29:1517–1530. doi:10.1016/S0146-6380(98)00124-7 CrossRefGoogle Scholar
  9. Böttcher ME, Hespenheide B, Llobet-Brossa E, Beardsley C, Larsen O, Schramm A et al (2000) The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Cont Shelf Res 20:1749–1769. doi:10.1016/S0278-4343(00)00046-7 CrossRefGoogle Scholar
  10. Boudreau BP (1992) A kinetic model for microbic organic-matter decomposition in marine sediments. FEMS Microbiol Ecol 102:1–14. doi:10.1111/j.1574-6968.1992.tb05789.x CrossRefGoogle Scholar
  11. Boudreau BP (1997) Diagenetic models and their implications. Springer, BerlinGoogle Scholar
  12. Caetano M, Falcão M, Bebianno MJ (1997) Tidal flushing of ammonium, iron and manganese from inter-tidal sediment pore waters. Mar Chem 58:203–211. doi:10.1016/S0304-4203(97)00035-2 CrossRefGoogle Scholar
  13. Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB et al (1993a) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40. doi:10.1016/0025-3227(93)90147-N CrossRefGoogle Scholar
  14. Canfield DE, Thamdrup B, Hansen JW (1993b) The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulphate reduction. Geochim Cosmochim Acta 57:3867–3883. doi:10.1016/0016-7037(93)90340-3 CrossRefGoogle Scholar
  15. Chang TS, Flemming BW, Tilch E, Bartholomä A, Wöstmann R (2006a) Late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea: transgressive deposition and its preservation potential. Facies 52:329–340. doi:10.1007/s10347-006-0080-2 CrossRefGoogle Scholar
  16. Chang TS, Bartholomä A, Flemming BW (2006b) Seasonal dynamics of fine-grained sediments in a back-barrier tidal basin of the German Wadden Sea (Southern North Sea). J Coast Res 22:328–338. doi:10.2112/03-0085.1 CrossRefGoogle Scholar
  17. Charette MA, Sholkovitz ER (2006) Trace element cycling in a subterranean estuary: Part 2 Geochemistry of the pore water. Geochim Cosmochim Acta 70:811–826. doi:10.1016/j.gca.2005.10.019 CrossRefGoogle Scholar
  18. Christiansen C, Vølund G, Lund-Hansen LC, Bartholdy J (2006) Wind influence on tidal flat sediment dynamics: field investigations in the Ho Bugt, Danish Wadden Sea. Mar Geol 235:75–86. doi:10.1016/j.margeo.2006.10.006 CrossRefGoogle Scholar
  19. De Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE et al (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50:113–127Google Scholar
  20. Delafontaine MT, Bartholomä A, Flemming BW, Kurmis R (1996) Volume-specific dry POC mass in surficial intertidal sediments: a comparison between biogenic muds and adjacent sand flats. Senckenb Marit 26:167–178Google Scholar
  21. Dellwig O, Hinrichs J, Hild A, Brumsack H-J (2000) Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach. J Sea Res 44:195–208. doi:10.1016/S1385-1101(00)00051-4 CrossRefGoogle Scholar
  22. Dellwig O, Bosselmann K, Kölsch S, Hentscher M, Hinrichs J, Böttcher ME et al (2007) Sources and fate of manganese in a tidal basin of the German Wadden Sea. J Sea Res 57:1–18. doi:10.1016/j.seares.2006.07.006 CrossRefGoogle Scholar
  23. Flemming BW, Davis RA Jr (1994) Holocene evolution, morphodynamics and sedimentology of the Spiekeroog barrier island system (Southern North Sea). Senckenb Marit 24:117–155Google Scholar
  24. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D et al (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090. doi:10.1016/0016-7037(79)90095-4 CrossRefGoogle Scholar
  25. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley-VCH, New YorkGoogle Scholar
  26. Gribsholt B, Kristensen E (2003) Benthic metabolism and sulfur cycling along an inundation gradient in a tidal spartina anglica salt marsh. Limnol Oceanogr 48:2151–2162Google Scholar
  27. Grunwald M, Dellwig O, Liebezeit G, Schnetger B, Reuter R, Brumsack H-J (2007) A novel time-series station in the Wadden Sea (NW Germany): first results on continuous nutrient and methane measurements. Mar Chem 107:411–421. doi:10.1016/j.marchem.2007.04.003 CrossRefGoogle Scholar
  28. Hensen C, Zabel M, Pfeifer K, Schwenk T, Kasten S, Riedinger N et al (2003) Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta 67:2631–2647. doi:10.1016/S0016-7037(03)00199-6 CrossRefGoogle Scholar
  29. Howarth RW, Jørgensen BB (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO4 2− reduction measurements. Geochim Cosmochim Acta 48:1807–1818. doi:10.1016/0016-7037(84)90034-6 CrossRefGoogle Scholar
  30. Howes BL, Goehringer DD (1994) Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar Ecol Prog Ser 114:289–301. doi:10.3354/meps114289 CrossRefGoogle Scholar
  31. Huettel M, Rusch A (2000) Transport and degradation of phytoplankton in permeable sediment. Limnol Oceanogr 45:534–549Google Scholar
  32. Huettel M, Ziebis W, Forster S (1996) Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr 41:309–322Google Scholar
  33. Huettel M, Ziebis W, Forster S, Luther GWIII (1998) Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim Cosmochim Acta 62:613–631. doi:10.1016/S0016-7037(97)00371-2 CrossRefGoogle Scholar
  34. Jahnke RA, Alexander CR, Kostka JE (2003) Advective pore water input of nutrients to the Satilla river estuary, Georgia, USA. Estuar Coast Shelf Sci 56:641–653. doi:10.1016/S0272-7714(02)00216-0 CrossRefGoogle Scholar
  35. Jørgensen BB (1982) Mineralization of organic matter in the sea bed–the role of sulphate reduction. Nature 296:643–645. doi:10.1038/296643a0 CrossRefGoogle Scholar
  36. Kristensen E, Bodenbender J, Jensen MH, Rennenberg H, Jensen KM (2000) Sulfur cycling of intertidal Wadden Sea sediments (Königshafen, Island of Sylt, Germany): sulfate reduction and sulfur gas emission. J Sea Res 43:93–104. doi:10.1016/S1385-1101(00)00007-1 CrossRefGoogle Scholar
  37. Kuwae T, Kibe E, Nakamura Y (2003) Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay. Estuar Coast Shelf Sci 57:929–940. doi:10.1016/S0272-7714(02)00423-7 CrossRefGoogle Scholar
  38. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory U.S. Department of Energy, Oak RidgeGoogle Scholar
  39. Liebezeit G, Behrends B, Kraul T (1996) Variability of nutrients and particulate matter in backbarrier tidal flats of the East Frisian Wadden Sea. Senckenbergiana 26:195–202Google Scholar
  40. Lunau M, Lemke A, Dellwig O, Simon M (2006) Physical and biogeochemical controls of microaggregate dynamics in a tidally affected coastal ecosystem. Limnol Oceanogr 51:847–859Google Scholar
  41. Magni P, Montani S (2006) Seasonal patterns of pore-water nutrients, benthic chlorophyll a and sedimentary AVS in a macrobenthos-rich tidal flat. Hydrobiologia 571:297–311. doi:10.1007/s10750-006-0242-9 CrossRefGoogle Scholar
  42. Mäkelä K, Tuominen L (2003) Pore water nutrient profiles and dynamics in soft bottoms of the northern Baltic Sea. Hydrobiologia 492:43–53. doi:10.1023/A:1024809710854 CrossRefGoogle Scholar
  43. Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363. doi:10.1016/0009-2541(94)90063-9 CrossRefGoogle Scholar
  44. Moeslund L, Thamdrup B, Jørgensen BB (1994) Sulfur and iron cycling in a coastal sediment: radiotracer studies and seasonal dynamics. Biogeochemistry 27:129–152Google Scholar
  45. Murray LG, Mudge SM, Newton A, Icely JD (2006) The effect of benthic sediments on dissolved nutrient concentrations and fluxes. Biogeochemistry 81:159–178. doi:10.1007/s10533-006-9034-6 CrossRefGoogle Scholar
  46. Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51:93–107. doi:10.1016/j.seares.2003.07.003 CrossRefGoogle Scholar
  47. Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave driven pore water exchange. Limnol Oceanogr 49:693–705Google Scholar
  48. Rusch A, Huettel M (2000) Advective particle transport into permeable sediments-evidence form experiments in an intertidal sandflat. Limnol Oceanogr 45:525–533Google Scholar
  49. Rusch A, Töpken H, Böttcher ME, Höpner T (1998) Recovery from black spots: results of a loading experiment in the Wadden Sea. J Sea Res 40:205–219. doi:10.1016/S1385-1101(98)00030-6 CrossRefGoogle Scholar
  50. Rusch A, Forster S, Huettel M (2001) Bacteria, diatoms and detritus in an intertidal sandflat subject to advective transport across the water-sediment interface. Biogeochemistry 55:1–27. doi:10.1023/A:1010687322291 CrossRefGoogle Scholar
  51. Rusch A, Huettel M, Wild C, Reimers CE (2006) Benthic oxygen consumption and organic matter turnover in organic-poor, permeable shelf sands. Aquat Geochem 12:1–19. doi:10.1007/s10498-005-0784-x CrossRefGoogle Scholar
  52. Sarazin G, Michard G, Prevot F (1999) A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res 33:290–294. doi:10.1016/S0043-1354(98)00168-7 CrossRefGoogle Scholar
  53. Schnetger B, Hinrichs J, Dellwig O, Shaw T, Brumsack H-J (2001) The significance of radionuclides and trace elements in a back barrier tidal area: results from the German Wadden Sea. In: Inaba J, Hisamatsu S, Ohtsuka Y (eds) Proceedings of the international workshop on distribution and speciation of radionuclides in the environment, Rokkasho, Aomori, Japan, October 2000, pp 99–106Google Scholar
  54. Sholkovitz E (1973) Interstitial water chemistry of the Santa Barbara Basin sediments. Geochim Cosmochim Acta 37:2043–2073. doi:10.1016/0016-7037(73)90008-2 CrossRefGoogle Scholar
  55. Sørensen J, Jørgensen BB, Revsbech NP (1979) A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microb Ecol 5:105–115. doi:10.1007/BF02010501 CrossRefGoogle Scholar
  56. Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650Google Scholar
  57. Thamdrup B, Finster K, Würgler Hansen J, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108Google Scholar
  58. Wedepohl KH (1971) Environmental influence on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the earth, vol 8. Pergamon, Oxford, pp 305–333Google Scholar
  59. Weston NB, Porubsky WP, Samarkin VA, Erickson M, Macavoy SE, Joye SB (2006) Porewater stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in estuarine intertidal creek-bank sediments. Biogeochemistry 77:375–408. doi:10.1007/s10533-005-1640-1 CrossRefGoogle Scholar
  60. Whiting GJ, Childers DL (1989) Subtidal advective water flux as a potentially important nutrient input to Southeastern U.S.A. saltmarsh estuaries. Estuar Coast Shelf Sci 28:417–431. doi:10.1016/0272-7714(89)90089-9 CrossRefGoogle Scholar
  61. Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2006a) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol. doi:10.1111/j.1574–6941.2006.00225.x
  62. Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006b) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719. doi:10.1111/j.1462-2920.2005.00949.x CrossRefGoogle Scholar
  63. Wilson AM, Gardner LR (2006) Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resour Res 42:W01405. doi:10.1029/2005WR004302 CrossRefGoogle Scholar
  64. Wirtz K (2003) Control of biochemical cycling by mobility and metabolic strategies of microbes in the sediments: an integrated model study. FEMS Microbiol Ecol 46:295–306. doi:10.1016/S0168-6496(03)00196-X CrossRefGoogle Scholar
  65. Ziebis W, Huettel M, Forster S (1996) Impact of biogenic sediment topography on oxygen fluxes in permeable seabeds. Mar Ecol Prog Ser 140:227–237. doi:10.3354/meps140227 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Melanie Beck
    • 1
  • Olaf Dellwig
    • 1
    • 2
  • Jan M. Holstein
    • 3
  • Maik Grunwald
    • 1
  • Gerd Liebezeit
    • 4
  • Bernhard Schnetger
    • 1
  • Hans-Jürgen Brumsack
    • 1
  1. 1.Research Group Microbiogeochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky UniversityOldenburgGermany
  2. 2.Leibniz Institute for Baltic Sea Research IOWRostockGermany
  3. 3.Research Group Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky UniversityOldenburgGermany
  4. 4.ICBM-TerramareWilhelmshavenGermany

Personalised recommendations