Advertisement

Biogeochemistry

, Volume 88, Issue 3, pp 233–256 | Cite as

Modelling the hydro-geochemistry of acid-sensitive catchments in Finland under atmospheric deposition and biomass harvesting scenarios

  • Julian Aherne
  • Maximilian Posch
  • Martin Forsius
  • Jussi Vuorenmaa
  • Pekka Tamminen
  • Maria Holmberg
  • Matti Johansson
Original Paper

Abstract

The dynamic hydro-geochemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to historic and future atmospheric deposition (1880–2100) and future tree harvesting practices. Deposition was assumed to follow current legislated European emission reduction policies (CLe) and a scenario based on maximum (technically) feasible reductions (MFR). Future harvesting was assumed to shift from stem-only harvesting (SOH) to whole-tree harvesting (WTH) owing to the potential increased utilisation of biofuels. Despite the modest changes in atmospheric deposition under CLe (compared to current day), these reductions are predicted to halt the decline in soil base saturation; however, further reductions are required to improve soil and lake water chemistry. The MFR scenario predicted a significant long-term improvement in soil base saturation leading to continued long-term recovery in surface waters (all lakes with ANC > 0 by 2100). However under the WTH scenario, significant long-term impacts (re-acidification) were predicted for soil and surface water chemistry (14 lakes with ANC < 0 by 2100). To some extent the long-term negative impacts were reduced under MFR, indicating that increased utilisation of biofuels will necessitate ‘trading emissions for timber’, or soil amendment, to maintain ecosystem quality and sustainable forest growth. The current practice of SOH is close to the sustainable maximum harvesting under current (legislated) atmospheric deposition in Finland.

Keywords

Acidification Lakes MAGIC Sulphur Base cations Calibration Tree harvesting 

Notes

Acknowledgements

This study was carried out as part of the Commission of European Communities project EUROLIMPACS (Integrated project to evaluate impacts of global change on European freshwaters ecosystems, GOCE-CT-2003-505540, www.eurolimpacs.ucl.ac.uk). This research was undertaken, in part, thanks to funding from the Canada Research Chairs Program and an NSERC Discovery grant. Noora Veijalainen (Finnish Environment Institute) is acknowledged for providing runoff estimates from the Finnish Watershed Simulation and Forecasting system, and Mike Starr (University of Helsinki) for providing mineral soil data.

References

  1. Aherne J, Dillon PJ, Cosby BJ (2003) Acidification and recovery of aquatic ecosystems in south-central Ontario, Canada: regional application of the MAGIC model. Hydrol Earth Syst Sci 7:561–573Google Scholar
  2. Aherne J, Larssen T, Dillon PJ, Cosby BJ (2004) Effects of climate events on elemental fluxes from forested catchments in Ontario, Canada: modelling drought-induced redox processes. Water Air Soil Pollut Focus 4:37–48CrossRefGoogle Scholar
  3. Aherne J, Larssen T, Cosby BJ, Dillon PJ (2006) Climate variability and forecasting surface water recovery from acidification: modelling drought-induced sulphate release from wetlands. Sci Total Environ 365:186–199CrossRefGoogle Scholar
  4. Akselsson C, Westling O, Sverdrup H, Holmqvist J, Thelin G, Uggla E, Malm G (2007) Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water Air Soil Pollut Focus 7:201–210CrossRefGoogle Scholar
  5. Alewell C, Manderscheid B (1998) Use of objective criteria for the assessment of biogeochemical ecosystem models. Ecol Modell 107:213–224CrossRefGoogle Scholar
  6. Alveteg M, Sverdrup H, Warfvinge P (1995) Regional assessment of the temporal trends in soil acidification in southern Sweden, using the SAFE model. Water Air Soil Pollut 85:2509–2514CrossRefGoogle Scholar
  7. Amann M, Bertok I, Cabala R, Cofala J, Heyes C, Gyarfas F, Klimont Z, Schöpp W, Wagner F (2005) A final set of scenarios for the Clean Air For Europe (CAFE) Programme. Final Report to the European Commission, International Institute for Applied Systems Analysis, Laxenburg, Austria, 103 pp. URL: www.iiasa.ac.at/rains
  8. Beier C, Moldan F, Wright RF (2003) Terrestrial ecosystem recovery—modelling the effects of reduced acidic inputs and increased inputs of sea salts induced by global change. Ambio 32:275–282CrossRefGoogle Scholar
  9. Bilaletdin Ä, Lepistö A, Finér L, Forsius M, Holmberg M, Kämäri J, Mäkelä H, Varjo J (2001) A regional GIS-based model to predict long-term responses of soil and soil water chemistry to atmospheric deposition: initial results. Water Air Soil Pollut 131:275–303CrossRefGoogle Scholar
  10. Bloom PR, Grigal DF (1985) Modeling soil response to acidic deposition in nonsulfate adsorbing soils. J Environ Qual 14:489–495CrossRefGoogle Scholar
  11. Clair TA, Aherne J, Dennis IF, Gilliss M, Couture S, McNicol D, Weeber R, Dillon PJ, Keller WB, Jeffries DS, Page S, Timoffee K, Cosby BJ (2007) Past and future changes to acidified eastern Canadian lakes: a geochemical modeling approach. Appl Geochem 22:1189–1195CrossRefGoogle Scholar
  12. Cosby BJ, Hornberger GM, Galloway JN, Wright RF (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51–63CrossRefGoogle Scholar
  13. Cosby BJ, Ferrier RC, Jenkins A, Wright RF (2001) Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5:499–517Google Scholar
  14. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006a) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles 20:GB4003. doi: 10.1029/2005GB002672 CrossRefGoogle Scholar
  15. Dentener F, Stevenson D, Ellingsen K, van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Müller JF, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006b) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594CrossRefGoogle Scholar
  16. De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B (2005) Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J 69:500–510Google Scholar
  17. De Vries W, Posch M (2003) Derivation of cation exchange constants for sand loess, clay and peat soils on the basis of field measurements in the Netherlands. Alterra-rapport 701, Alterra Green World Research, Wageningen, The Netherlands, 50 ppGoogle Scholar
  18. De Vries W, Posch M, Kämäri J (1989) Simulation of the long-term soil response to acid deposition in various buffer ranges. Water Air Soil Pollut 48:349–390CrossRefGoogle Scholar
  19. De Vries W, Reinds GJ, Posch M, Kämäri J (1994) Simulation of soil response to acidic deposition scenarios in Europe. Water Air Soil Pollut 78:215–246CrossRefGoogle Scholar
  20. Driscoll CT, Lehtinen MD, Sullivan TJ (1994) Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes. Water Resour Res 30:297–306CrossRefGoogle Scholar
  21. EMEP (2004) EMEP assessment, part I, European perspective. Norwegian Meteorological Institute, Oslo, Norway. URL: www.emep.int
  22. Ericsson K, Huttunen S, Nilsson LJ, Svenningsson P (2004) Bioenergy policy and market development in Finland and Sweden. Energy Policy 32:1707–1721CrossRefGoogle Scholar
  23. European Commission (1996) Energy for the future: renewable sources of energy. COM (96) 576, BruxellesGoogle Scholar
  24. Forsius M, Malin V, Mäkinen I, Mannio J, Kämäri J, Kortelainen P, Verta M (1990) Finnish lake acidification survey: design and random selection of lakes. Environmetrics 1:79–99Google Scholar
  25. Forsius M, Johansson M, Posch M, Holmberg M, Kämäri J, Lepistö A, Roos J, Syri S, Starr M (1997) Modelling the effects of climate change, acidic deposition and forest harvesting on the biogeochemistry of a boreal forested catchment in Finland. Boreal Environ Res 2:129–143Google Scholar
  26. Forsius M, Alveteg M, Jenkins A, Johansson M, Kleemola S, Lükewille A, Posch M, Sverdrup H, Walse C (1998) MAGIC, SAFE and SMART model applications at integrated monitoring sites: effects of emission reduction scenarios. Water Air Soil Pollut 105:21–30CrossRefGoogle Scholar
  27. Forsius M, Vuorenmaa J, Mannio J, Syri S (2003) Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy. Sci Total Environ 310:121–132CrossRefGoogle Scholar
  28. Hakkila P (2004) Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999–2003. Tekes, Technology Programme Report 6/2004 (Final Report)Google Scholar
  29. Harrison AF, Bocock KL (1981) Estimation of soil bulk-density from loss-of-ignition values. J Appl Ecol 8:919–927Google Scholar
  30. Henriksen A, Posch M, Hultberg H, Lien L (1995) Critical loads of acidity for surface waters—can the ANClimit be considered variable? Water Air Soil Pollut 85:2419–2424CrossRefGoogle Scholar
  31. Hettelingh J-P, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L (2007) Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air Soil Pollut Focus 7:379–384CrossRefGoogle Scholar
  32. Holmberg M, Rankinen K, Johansson M, Forsius M, Kleemola S, Ahonen J, Syri S (2000) Sensitivity of soil acidification model to deposition and forest growth. Ecol Modell 135:311–325CrossRefGoogle Scholar
  33. Holmberg M, Mulder J, Posch M, Starr M, Forsius M, Johansson M, Bak J, Ilvesniemi H, Sverdrup H (2001) Critical loads of acidity for forest soils: tentative modifications. Water Air Soil Pollut Focus 1:91–101CrossRefGoogle Scholar
  34. Hruska J, Köhler S, Laudon H, Bishop K (2003) Is a universal model of organic acidity possible: comparison of the acid-base properties of dissolved organic carbon in the boreal and temperate zones. Environ Sci Technol 37:1726–1730CrossRefGoogle Scholar
  35. Hutchinson NJ, Holtze KE, Munro JR, Pawson TW (1989) Modifying effects of life stage, ionic strength and post-exposure mortality on lethality of H+ and Al to lake trout and brook trout. Aquat Toxicol 15:1–26CrossRefGoogle Scholar
  36. Iivonen P, Kenttämies K (eds) (1994) Liming of acidified surface waters in Finland. Water and Environment Series A 204. National Board of Waters and the Environment, Helsinki, 74 pp (in Finnish with English summary)Google Scholar
  37. Iivonen P, Kämäri J, Posch M (1993) Modelling the chemical response of a moderately acidified catchment in southern Finland to decreased sulphur deposition. Aqua Fenn 23:235–249Google Scholar
  38. Janssen PHM, Heuberger PSC (1995) Calibration of process-oriented models. Ecol Modell 83:55–66CrossRefGoogle Scholar
  39. Järvinen O, Vänni T (1990) Bulk deposition chemistry in Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin Heidelberg, pp 151–165Google Scholar
  40. Jenkins A, Larssen T, Moldan F, Hruška J, Krám P, Kleemola S (2003) Dynamic modelling at Integrated Monitoring sites—model testing against observations and uncertainty. The Finnish Environment 636, Finnish Environment Institute, Helsinki, 37 ppGoogle Scholar
  41. Johansson M, Tarvainen T (1997) Estimation of weathering rates for critical load calculations in Finland. Environ Geol 29:158–164CrossRefGoogle Scholar
  42. Johansson M, Kämäri J, Pipatti R, Savolainen I, Tuovinen J-P, Tähtinen M (1990) Development of an integrated model for the assessment of acidification in Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin Heidelberg, pp 1171–1193Google Scholar
  43. Johnson CE (2002) Cation exchange properties of acid forest soils of the northeastern USA. Eur J Soil Sci 53:271–282CrossRefGoogle Scholar
  44. Johnson CE, Ruiz-Mendez JJ, Lawrence GB (2000) Forest soil chemistry and terrain attributes in a Catskills watershed. Soil Sci Soc Am J 64:1804–1814Google Scholar
  45. Joki-Heiskala P, Johansson M, Holmberg M, Mattsson T, Forsius M, Kortelainen P, Hallin L (2003) Long-term base cation balances of forest mineral soils in Finland. Water Air Soil Pollut 150:255–273CrossRefGoogle Scholar
  46. Kämäri J, Posch M, Kähkönen A-M, Johansson M (1995) Modeling potential long-term responses of a small catchment in Lapland to changes in sulfur deposition. Sci Total Environ 160/161:687–701CrossRefGoogle Scholar
  47. Kämäri J, Rankinen K, Finér L, Piirainen S, Posch M (1998) Modelling the response of soil and runoff chemistry to forest harvesting in a low deposition area (Kangasvaara, Eastern Finland). Hydrol Earth Syst Sci 2:485–495Google Scholar
  48. Kelly CA, Rudd JWM, Hesslein RH, Schindler DW, Dillon PJ, Driscoll CT, Gherini SA, Hecky RE (1987) Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry 3:129–140CrossRefGoogle Scholar
  49. Kirchner JW, Hooper RP, Kendall C, Neal C, Leavesley G (1996) Testing and validating environmental models. Sci Total Environ 1–2:33–47Google Scholar
  50. Kulmala A, Leinonen L, Ruoho-Airola T, Salmi T, Waldén J (1998) Air quality trends in Finland. Air Quality Measurements, Finnish Meteorological Institute, HelsinkiGoogle Scholar
  51. Kuusela K (1977) Increment and timber assortment structure and their regionality of the forests of Finland in 1970–1976. Folia Forestalia 320. Finnish Forest Research Institute, Helsinki, 31 pp (in Finnish with English summary)Google Scholar
  52. Larssen T (2005) Model prognoses for future acidification recovery of surface waters in Norway using long-term monitoring data. Environ Sci Technol 39:7970–7979CrossRefGoogle Scholar
  53. Larssen T, Høgåsen T, Cosby BJ (2005) Impact of time series data on calibration and prediction uncertainty for a deterministic hydrogeochemical model. Ecol Modell 207:22–33CrossRefGoogle Scholar
  54. Lien L, Raddum GG, Fjellheim A, Henriksen A (1996) A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Sci Total Environ 177:173–193CrossRefGoogle Scholar
  55. Lummel I, Arkhipov V (1996) Atmospheric deposition of sulphur, nitrogen, base cations in Scots pine stands of south-eastern Finland, the Karelian Isthmus, NW Russia in 1992. Hydrobiologia 322(1):223–226CrossRefGoogle Scholar
  56. Mälkönen E (1975) Annual primary production and nutrient cycle in some Scots pine stands. Communicationes Instituti Forestalis Fenniae 84, Helsinki, 87 ppGoogle Scholar
  57. Mannio J (2001) Recovery pattern from acidification of headwater lakes in Finland. Water Air Soil Pollut 130:1427–1432CrossRefGoogle Scholar
  58. Mannio J, Vuorenmaa J (1995) Regional monitoring of lake acidification in Finland. Water Air Soil Pollut 85:571–576CrossRefGoogle Scholar
  59. Mannio J, Järvinen O, Tuominen R, Verta M (1995) Survey of trace elements in lake waters of Finnish Lapland using the ICP-MS technique. Sci Total Environ 160/161:433–439CrossRefGoogle Scholar
  60. Mattsson T, Kortelainen P, Lepistö A, Räike A (2007) Organic and minerogenic acidity in Finnish rivers in relation to land use/cover. Sci Total Environ 383:183–192CrossRefGoogle Scholar
  61. Minkkinen K, Laine J (1998) Effect of forest drainage on the peat bulk density of pine mires in Finland. Can J For Res 28:178–186CrossRefGoogle Scholar
  62. Neal C (1997) A view of water quality from the Plynlimon watershed. Hydrol Earth Syst Sci 1:743–753Google Scholar
  63. Olsson M, Rosén K, Melkerud P-A (1993) Regional modelling of base cation losses from Swedish forest soils due to whole-tree harvesting. Appl Geochem 2:189–194Google Scholar
  64. Posch M, Forsius M, Johansson M, Vuorenmaa J, Kämäri J (2003) Modelling the recovery of acid-sensitive Finnish headwater lakes under present emission reduction agreements. Hydrol Earth Syst Sci 7:484–493Google Scholar
  65. Posch M, Aherne J, Forsius M, Fronzek S, Veijalainen N (2008) Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland. Hydrol Earth Syst Sci 12:449–463Google Scholar
  66. Ranta T (2005) Logging residues from regeneration fellings for biofuel production—a GIS-based availability analysis in Finland. Biomass Bioenergy 28:171–182CrossRefGoogle Scholar
  67. Rask M, Mannio J, Forsius M, Posch M, Vuorinen P (1995a) How many fish populations in Finland are affected by acid precipitation? Environ Biol Fishes 42:51–63CrossRefGoogle Scholar
  68. Rask M, Raitaniemi J, Mannio J, Vuorenmaa J, Nyberg K (1995b) Losses and recoveries of fish populations in acidified lakes of southern Finland in the last decade. Water Air Soil Pollut 85:315–320CrossRefGoogle Scholar
  69. Rask M, Pöysä H, Nummi P, Karppinen C (2001) Recovery of perch (Perca fluviatilis) in an acidified lake and subsequent responses in macroinvertebrates and the goldeneye (Bucephala clangula). Water Air Soil Pollut 130:1367–1372CrossRefGoogle Scholar
  70. Rosén K (1982) Supply, loss and distribution of nutrients in three coniferous forest watersheds in central Sweden. Reports in Forest Ecology and Forest Soils 41. Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  71. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184CrossRefGoogle Scholar
  72. Ross DS, Bartlett RJ (1995) Apparent pH independence of charge in forest organic surface soil horizons. Water Air Soil Pollut 85:1113–1118CrossRefGoogle Scholar
  73. Schöpp W, Posch M, Mylona S, Johansson M (2003) Trends in acid deposition (1880–2030) for sensitive freshwater regions in Europe. Hydrol Earth Syst Sci 7:436–446Google Scholar
  74. Skjelkvåle BL, Evans C, Larssen T, Hindar A, Raddum GG (2003) Recovery from acidification in European surface waters: a view to the future. Ambio 32:170–175CrossRefGoogle Scholar
  75. Skjelkvåle BL, Stoddard JL, Jeffers JNR, Tørseth K, Høgåsen T, Bowman J, Mannio J, Monteith D, Mosello R, Rogora M, Rzychon D, Veselý J, Wieting J, Wilander A, Worsztynowicz A (2005) Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 137:165–176CrossRefGoogle Scholar
  76. Skyllberg U (1994) Aluminum associated with a pH-increase in the humus layer of a boreal haplic podzol. Interciencia 19:356–365Google Scholar
  77. Sofiev M, Kaasik M, Hongisto M (2003) Model simulations of the alkaline dust distribution from Estonian sources over the Baltic Sea basin. Water Air Soil Pollut 146:211–223CrossRefGoogle Scholar
  78. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New YorkGoogle Scholar
  79. Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith D, Murdoch PS, Patrick S, Rebsdorf A, Skjelkvåle BL, Stainton MP, Traaen TS, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe 1980–95. Nature 401:575–578CrossRefGoogle Scholar
  80. Stoddard JL, Karl JS, Deviney FA, DeWalle DR, Driscoll CT, Herlihy AT, Kellogg JH, Murdoch PS, Webb JR, Webster KE (2003) Response of surface water chemistry to the clean air act amendments of 1990. Report EPA 620/R-03/001, United States Environmental Protection Agency, North Carolina, 78 ppGoogle Scholar
  81. Sullivan TJ, Cosby BJ (1998) Modeling the concentration of aluminum in surface waters. Water Air Soil Pollut 105:643–659CrossRefGoogle Scholar
  82. Sullivan TJ, Cosby BJ, Driscoll CT, Charles DF, Hemond HF (1996) Influence of organic acids on model projections of lake acidification. Water Air Soil Pollut 91:271–282CrossRefGoogle Scholar
  83. Sundström E, Magnusson T, Hånell B (2000) Nutrient conditions in drained peatlands along a north-south climatic gradient in Sweden. For Ecol Manage 126:149–161CrossRefGoogle Scholar
  84. Sverdrup H, Rosén K (1998) Long-term base cation mass balances for Swedish forests and the concept of sustainability. For Ecol Manage 110:221–236CrossRefGoogle Scholar
  85. Tamminen P, Starr MR (1990) A survey of forest soil properties related to soil acidification in southern Finland. In: Kauppi P, Anttila P, Kenttämies K (eds) Acidification in Finland. Springer, Berlin Heidelberg, pp 231–247Google Scholar
  86. Tarrason L, Benedictow A, Fagerli H, Jonson JE, Klein H, Van Loon M, Simpson D, Tsyro S, Vestreng V, Wind P, Forster C, Stohl A, Amann M, Cofala J, Langner J, Andersson C, Bergström R (2005) Transboundary acidification, eutrophication and ground level ozone in Europe in 2003. EMEP Report 1/2005, Norwegian Meteorological Institute, Oslo. URL: www.emep.int
  87. Tarvainen T, Lahermo P, Mannio J (1997) Sources of trace metals in streams and headwater lakes in Finland. Water Air Soil Pollut 94:1–32Google Scholar
  88. Van Wallenburg C (1988) The density of peaty soils (in Dutch). Internal Report, Soil Survey Institute, Wageningen, The Netherlands, p 5Google Scholar
  89. Vehviläinen B (2007) Hydrological forecasting and real-time monitoring: the watershed simulation and forecasting system (WSFS). In: Heinonen P, Ziglio G, Van Der Beken A (eds) Water quality measurements series. Wiley, pp 13–20Google Scholar
  90. Vehviläinen B, Huttunen M (2002) The Finnish watershed simulation and forecasting system (WSFS). Publication of the 21st conference of Danube countries on the hydro-logical forecasting and hydrological bases of water managementGoogle Scholar
  91. Vuorenmaa J (2004) Long-term changes of acidifying deposition in Finland (1973–2000). Environ Pollut 128:351–362CrossRefGoogle Scholar
  92. Vuorenmaa J, Forsius M (2008) Recovery of acidified Finnish lakes: trends, patterns and dependence of catchment characteristics. Hydrol Earth Syst Sci 12:465–478CrossRefGoogle Scholar
  93. Warfvinge P, Holmberg M, Posch M, Wright RF (1992) The use of dynamic models to set target loads. Ambio 21:369–376Google Scholar
  94. Warfvinge P, Falkengren-Grerup U, Sverdrup H, Andersen B (1993) Modelling long-term cation supply in acidified forest stands. Environ Pollut 80:209–221CrossRefGoogle Scholar
  95. Westman CJ, Laiho R (2003) Nutrient dynamics of drained peatland forests. Biogeochemistry 63:269–298CrossRefGoogle Scholar
  96. Wright RF, Lotse E, Semb A (1993) RAIN Project: results after 8 years of experimentally reduced acid deposition to a whole catchment. Can J Fish Aquat Sci 50:258–268CrossRefGoogle Scholar
  97. Wright RF, Camarero L, Cosby BJ, Ferrier RC, Forsius M, Helliwell R, Jenkins A, Kopáček J, Larssen T, Majer V, Moldan F, Posch M, Rogora M, Schöpp W (2005) Recovery of acidified European surface waters. Environ Sci Technol 39:64A–72ACrossRefGoogle Scholar
  98. Wright RF, Aherne J, Bishop K, Camarero L, Cosby BJ, Erlandsson M, Evans CD, Forsius M, Hardekopf D, Helliwell R, Hruska J, Jenkins A, Moldan F, Posch M, Rogora M (2006) Modelling the effect of climate change on recovery of acidified freshwaters: relative sensitivity of individual processes in the MAGIC model. Sci Total Environ 365:154–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Julian Aherne
    • 1
  • Maximilian Posch
    • 2
  • Martin Forsius
    • 3
  • Jussi Vuorenmaa
    • 3
  • Pekka Tamminen
    • 4
  • Maria Holmberg
    • 3
  • Matti Johansson
    • 5
  1. 1.Department of Environmental and Resource StudiesTrent UniversityPeterboroughCanada
  2. 2.Coordination Centre for Effects (CCE)PBLBilthovenThe Netherlands
  3. 3.Finnish Environment Institute (SYKE)HelsinkiFinland
  4. 4.Finnish Forest Research Institute (METLA)VantaaFinland
  5. 5.United Nations Economic Commission for EuropeGenevaSwitzerland

Personalised recommendations