Biogeochemistry

, Volume 88, Issue 3, pp 213–231

Phosphorus dynamics and bioavailability in sediments of the Penzé Estuary (NW France): in relation to annual P-fluxes and occurrences of Alexandrium Minutum

  • F. Andrieux-Loyer
  • X. Philippon
  • G. Bally
  • R. Kérouel
  • A. Youenou
  • J. Le Grand
Original Paper

Abstract

The macrotidal estuary of Penzé (Brittany, Western part of the Channel, France) has been subjected to recurrent annual toxic blooms of Alexandrium minutum since 1988. This study aims to specify the phosphorus dynamics and bioavailability in sediments in order to improve our understanding of Alexandrium occurrences. Sediment-P pools and diffusive phosphate fluxes were studied under similar hydrodynamic conditions, in the intermediate estuary in May, June and July 2003 and along the salinity gradient from August 2004 to June 2005. The results highlight a decrease in bioavailable phosphorus (iron and organic bound) from the inner part of the estuary seaward. The ratio of iron-bound phosphorus to iron-oxyhydroxides is lower in the inner and intermediate estuaries (5–8) than in the outer site (15), suggesting a saturation of sorption sites and greater phosphorus bioavailability in this area. Pools of bioavailable phosphorus in surficial sediments are about eight times higher than the annual net-export of P (7 ton year−1). Phosphate releases from sediments are always lower than 5 μmol m−2 d−1 in March. The highest supplies occur in June and August in the intermediate area (up to 400 μmol m−2 d−1) where they represent up to 50% of river loadings. These results further suggest that phosphate pulses coincide with occurrences of Alexandrium reported in June.

Keywords

Alexandrium minutum Estuary Phosphate fluxes Pore water Sediment phosphorus Sequential extraction 

References

  1. Aller RC, Yingst JY (1980) Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA. Mar Biol 56(1):29–42CrossRefGoogle Scholar
  2. Aminot A, Andrieux F (1996) Concept and determination of exchangeable phosphate in aquatic sediments. Water Res 30(11):2805–2811CrossRefGoogle Scholar
  3. Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ed. Ifremer, Méthodes d’analyse en milieu marin, 188 ppGoogle Scholar
  4. Aminot A, Guillaud JF, Andrieux F (1993) Spéciation du phosphore et apports en baie de Seine orientale. Oceanol Acta 16(5–6):617–623Google Scholar
  5. Andrieux F, Aminot A (1997) A two-year survey of phosphorus speciation in the sediments of the Bay of Seine (France). Cont Shelf Res 17(10):1229–1245CrossRefGoogle Scholar
  6. Andrieux-Loyer F, Aminot A (2001) Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas. Estuar Coast Shelf Sci 52:617–629CrossRefGoogle Scholar
  7. Anonymous (2004) 2003 Activity report. IFREMER Publishing (May 2004, R. INT. DEL/EC/04–03), 105 ppGoogle Scholar
  8. Anschutz P, Hyacinthe C, Carbonel P, Jouanneau JM, Jorissen F (1999) La distribution du phosphore inorganique dans les sédiments modernes du Golfe de Gascogne. Académie des Sciences 328:765–771Google Scholar
  9. Aspila KI, Agemian H, Chau AS (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197CrossRefGoogle Scholar
  10. Avilés A, Niell FX (2005) Pattern of phosphorus forms in a Mediterranean shallow estuary: effects of flooding events. Estuar Coast Shelf Sci 64:786–794CrossRefGoogle Scholar
  11. Barbanti A, Ceccherelli VU, Frascari F, Reggiani G, Rosso G (1992) Nutrient regeneration processes in bottom sediments in a Po delta lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment–water interface. Hydrobiologia 228:1–21CrossRefGoogle Scholar
  12. Beller P, Pomerol P (1977) Eléments de Géologie. Armand Colin, Paris, 528 ppGoogle Scholar
  13. Berner RA (1980) Early diagenesis: a theorical approach. Princeton University Press, Princeton, pp 9–14Google Scholar
  14. Berner RA, Ruttenberg KC, Rao JiL (1993) The nature of phosphorus burial in modern marine sediments. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P and S biogeochemical cycles and global changes. NATO ASI series I: global environmental change, vol 4. Springer-VerlagGoogle Scholar
  15. Boudreau BP (1996) The diffusive tortuosity of fine-grained unlithified sediments. Geochim Cosmochim Acta 60:3139–3142CrossRefGoogle Scholar
  16. Callender E, Hammond DE (1982) Nutrient exchanges across the sediment–water interface in the Potomac River estuary. Estuar Coast Shelf Sci 15(4):395–415CrossRefGoogle Scholar
  17. Calvet R (2005) Le Sol: propriétés et fonctions, tome 1, constitution et structure, phénomènes aux interfaces. (France Agricols, ed), DUNOD Publishing, p 164Google Scholar
  18. Cauwet G (1975) Optimisation d’une technique de dosage du carbone organique des sediments. Chem Geol 16:59–63CrossRefGoogle Scholar
  19. Clavero V, Izquierdo JJ, Fernández JA, Niell FX (1999) Influence of bacterial density on the exchange of phosphate between sediment and overlying water. Hydrobiologia 392(1):55–63CrossRefGoogle Scholar
  20. Clavero V, Izquierdo JJ, Fernández JA, Niell FX (2000) Seasonal fluxes of phosphate and ammonium across the sediment–water interface in a shallow small estuary (Palmones River, southern Spain). Mar Ecol Prog Ser 198:51–60CrossRefGoogle Scholar
  21. Coelho JP, Flindt MR, Jensen HS, Lillebø AI, Pardal MA (2004) Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutophication and annual P fluxes. Estuar Coast Shelf Sci 61:583–590CrossRefGoogle Scholar
  22. De Jonge VN, Engelkes MM, Bakker JF (1993) Bio-availability of phosphorus in sediments of the western Dutch Wadden Sea. Hydrobiologia 253:151–163CrossRefGoogle Scholar
  23. ECOFLUX (2007) Qualité des eaux de treize rivières du Finistère. IUEM-Réseau Ecoflux, Place Nicolas Copernic, 29280 PlouzanéGoogle Scholar
  24. Ehrenhauss SU, Witte U, Janssen F, Huettel M (2004) Decomposition of diatoms and nutrients dynamics in permeable North Sea sediments. Cont Shelf Res 24:721–737CrossRefGoogle Scholar
  25. Erard-Le Denn E (1997). Alexandrium minutum. In: Berland B, Lassus P (eds) Efflorescences Toxiques des Eaux Côtières Françaises: Ecologie, Ecophysiologie, Toxicologie. IFREMER/Brest Publishing, pp 53–65Google Scholar
  26. Fisher TR, Carlson PR, Barber RT (1982) Sediment nutrient regeneration in three North Carolina estuaries. Estuar Coast Shelf Sci 14(1):101–116CrossRefGoogle Scholar
  27. Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol Oceanogr 33:649–668Google Scholar
  28. Gallioz C (2004) Etude préliminaire: évaluation du rôle du phosphore sédimentaire dans la dynamique d’apparition des blooms d’Alexandrium minutum en estuaire de Penzé, 29 pp. http://www.ifremer.fr/delec/communication/rapports/rapport2.htm
  29. Hyacinthe C, Anschutz P, Carbonel P, Jouanneau JM, Jorissen FJ (2001) Early diagenetic processes in the muddy sediments of the Bay of Biscay. Mar Geol 177:111–128CrossRefGoogle Scholar
  30. Jensen HS, Bo Thamdrup (1993) Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59CrossRefGoogle Scholar
  31. Kérouel R, Aminot A (1997) Fluorimetric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar Chem 57:265–275CrossRefGoogle Scholar
  32. Krom MD, Berner RA (1980) The diffusion coefficients of sulphate, ammonium, and phosphate ions in anoxic marine sediments. Limnol Oceanogr 25:327–337Google Scholar
  33. Labry C, Erard-Le Denn E, Chapelle A, Fauchot J, Youenou A, Crassous MP, Le Grand J, Lorgeoux B (2008) Competition for phosphorus between two dinoflagellates: a toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. J Exp Mar Biol Ecol 358:124–135CrossRefGoogle Scholar
  34. Larsonneur C (1971) Manche Centrale et Baie de Seine: géologie du substratum et des dépôts meubles. Thèse d’état de l’Université de Caen, n° A.O.5404, 387 ppGoogle Scholar
  35. Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediment. Geochim Cosmochim Acta 33:703–714Google Scholar
  36. Maguer JF, Wafar M, Madec C, Morin P, Erard-Le Denn E (2004) Nitrogen and phosphorus requirements of an Alexandrium minutum bloom in the Penzé Estuary, France. Limnol Oceanogr 49(4):1108–1114CrossRefGoogle Scholar
  37. Manheim FT (1970) The diffusion of ions in unconsolidated sediments. Earth Planet Sci Lett 9:307–309CrossRefGoogle Scholar
  38. Martens CS, Klump JV (1980) Biogeochemical cycling in an organic-rich coastal marine basine. 1. Methane sediment-water exchange processes. Geochim Cosmochim Acta 44(3):471–490CrossRefGoogle Scholar
  39. Morris JT, Bowden WB (1986) A mechanistic, numerical model of sedimentation, mineralization, and decomposition for March sediments. Soil Sci Soc Am J 50:96–105Google Scholar
  40. Morse JW, Cook N (1978) The distribution and forms of phosphorus in North Atlantic Ocean deep-sea and continental slope sediments. Limnol Oceanogr 23:825–830Google Scholar
  41. Mudroch A, Azcue JM (1995) Manual of aquatic sediment sampling. Lewis Publishers, CRC Press Inc., 252 ppGoogle Scholar
  42. Oldham CE, Lavery PS (1999) Porewater nutrient fluxes in a shallow fetch-limited estuary. Mar Ecol Prog Ser 183:39–47CrossRefGoogle Scholar
  43. Paludan C, Jensen HS (1995) Sequential extraction of phosphorus in freshwater wetland and lake sediment, significance of humic acids. Wetlands 15:365–373Google Scholar
  44. Paludan C, Morris JT (1999) Distribution and speciation of phosphorus along a salinity gradient in intertidal March sediments. Biogeochemistry 45:197–221Google Scholar
  45. Postma D (1993) The reactivity of iron oxides in sediments: a kinetic approach. Geochim Cosmochim Acta 57(21–22):5027–5034CrossRefGoogle Scholar
  46. Psenner R, Boström B, Dinka M, Petterson K, Pucsko R, Sager M (1988) Fractionation of phosphorus in suspended matter and sediment. Arch Hydrobiol Beih Ergebn Limnol 30:98–103Google Scholar
  47. Redfield AC (1958) The biological control of chemical factors in the environment. Am J Sci 46:205–222Google Scholar
  48. Resing JA, Mottl MJ (1992) Determination of manganese in seawater using flow injection analysis with on-line preconcentration and spectrophotometric detection. Anal Chem 64:2682–2687CrossRefGoogle Scholar
  49. Ruttenberg KC (1990) Diagenesis and burial of phosphorus in marine sediments: implications for the marine phosphorus budget. Ph.D. thesis, Yale University, 375 ppGoogle Scholar
  50. Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim Cosmochim Acta 57:991–1007CrossRefGoogle Scholar
  51. Ruttenberg KC, Turnewitsch R, Witte U, Graf G (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr 37(7):1460–1482Google Scholar
  52. Sanders R, Klein C, Jickells T (1997) Biogeochemical nutrient cycling in the Upper Great Ouse Estuary, Norfolk, U.K. Estuar Coast Shelf Sci 44(5):543–555 CrossRefGoogle Scholar
  53. Sarradin PM, Le Bris N, Le Gall C, Rodier P (2005) Fe analysis by the ferrozine method: adaptation to FIA towards in situ analysis in hydrothermal environment. Talanta 66:1131–1138CrossRefGoogle Scholar
  54. Schenau SJ, De Lange GJ (2001) Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Mar Chem 75:201–217CrossRefGoogle Scholar
  55. Schlungbaum G, Nausch G (1990) Phosphate sorption equilibrium at sediment–water interfaces—consequences for the rehabilitation of waters. In: Michaelis (ed) Coastal and estuarine studies, estuarine water quality management, monitoring, modelling and research. Springer-Verlag, BerlinGoogle Scholar
  56. Slomp CP, Epping EHG, Helder W, Van Raaphorst W (1996a) A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J Mar Res 54:1179–1205CrossRefGoogle Scholar
  57. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88CrossRefGoogle Scholar
  58. Stumm W (1992) Chemistry of the solid–water interface. In: Processes at the mineral-water and particulate interface in natural systems. Wiley-Interscience Publication, New York, 428 ppGoogle Scholar
  59. Sundby B (2006) Transient state diagenesis in continental margin muds. Mar Chem 102(1–2):2–12CrossRefGoogle Scholar
  60. Sundby B, Gobeil N, Silverberg N, Mucci A (1992) The phosphorus cycle in coastal marine sediments. Limnol Oceanogr 37:1129–1145CrossRefGoogle Scholar
  61. Van der Zee C, Slomp CP, Van Raaphorst W (2002) Authigenic P formation and reactive P burial in sediments of the Nazaré canyon on the Iberian margin (NE Atlantic). Mar Geol 185:379–392CrossRefGoogle Scholar
  62. Van-Raaphorst W, Ruardij P, Brinkman AG (1988) The assessment of benthic phosphorus regeneration in an estuarine ecosystem model. Neth J Sea Res 22(1):23–36CrossRefGoogle Scholar
  63. Waeles M (2005) Seasonal variations of cadmium speciation in the Penzé estuary, NW France. Estuar Coast Shelf Sci 62(1–2):313–323CrossRefGoogle Scholar
  64. Wenthworth CK (1922) Grade and class terms for clastic sediments. J Geol 30:327–392CrossRefGoogle Scholar
  65. Williams JDH, Mayer T, Nriagu JO (1980) Extractability of phosphorus from phosphate minerals common in soils and sediments. Soil Sci Soc Am J 44:462–465Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Andrieux-Loyer
    • 1
  • X. Philippon
    • 1
  • G. Bally
    • 1
  • R. Kérouel
    • 1
  • A. Youenou
    • 1
  • J. Le Grand
    • 1
  1. 1.DYNECO PelagosIFREMERPlouzaneFrance

Personalised recommendations