Advertisement

Biogeochemistry

, Volume 85, Issue 2, pp 125–139 | Cite as

Nitrogen dynamics and soil nitrate retention in a Coffea arabicaEucalyptus deglupta agroforestry system in Southern Costa Rica

  • Jean-Michel Harmand
  • Hector Ávila
  • Etienne Dambrine
  • Ute Skiba
  • Sergio de Miguel
  • Reina Vanessa Renderos
  • Robert Oliver
  • Francisco Jiménez
  • John Beer
Original Paper

Abstract

Nitrogen fertilization is a key factor for coffee production but creates a risk of water contamination through nitrate (NO 3 ) leaching in heavily fertilized plantations under high rainfall. The inclusion of fast growing timber trees in these coffee plantations may increase total biomass and reduce nutrient leaching. Potential controls of N loss were measured in an unshaded coffee (Coffea arabica L.) plot and in an adjacent coffee plot shaded with the timber species Eucalyptus deglupta Blume (110 trees ha−1), established on an Acrisol that received 180 kg N ha−1 as ammonium-nitrate and 2,700 mm yr−1 rainfall. Results of the one year study showed that these trees had little effect on the N budget although some N fluxes were modified. Soil N mineralization and nitrification rates in the 0–20 cm soil layer were similar in both systems (≈280 kg N ha−1 yr−1). N export in coffee harvest (2002) was 34 and 25 kg N ha−1 yr−1 in unshaded and shaded coffee, and N accumulation in permanent biomass and litter was 25 and 45 kg N ha−1 yr−1, respectively. The losses in surface runoff (≈0.8 kg mineral N ha−1 yr−1) and N2O emissions (1.9 kg N ha−1 yr−1) were low in both cases. Lysimeters located at 60, 120, and 200 cm depths in shaded coffee, detected average concentrations of 12.9, 6.1 and 1.2 mg NO 3 -N l−1, respectively. Drainage was slightly reduced in the coffee-timber plantation. NO 3 leaching at 200 cm depth was about 27 ± 10 and 16 ± 7 kg N ha−1 yr−1 in unshaded and shaded coffee, respectively. In both plots, very low NO 3 concentrations in soil solution at 200 cm depth (and in groundwater) were apparently due to NO 3 adsorption in the subsoil but the duration of this process is not presently known. In these conventional coffee plantations, fertilization and agroforestry practices must be refined to match plant needs and limit potential NO 3 contamination of subsoil and shallow soil water.

Keywords

Nitrate leaching Nitrate adsorption N2O emissions N mineralization Water contamination Acrisol (Ultisol) Coffee agroforestry 

Abbreviations

AET

actual evapotranspiration

TDR

time domain reflectrometry

LAI

leaf area index

Masl

meter above sea level

N

nitrogen

Notes

Acknowledgements

The authors thank the Verde Vigor S. A. farm and particularly Marcos Cespedes for maintenance of the on-farm experiment. The authors are also grateful to Pablo Siles (CATIE) for careful assistance in the sample collection and processing and Patricia Leandro (CATIE) for laboratory analyses. The European Commission (INCO project CASCA, ICA4-CT-2001–10071) and the Science and Cultural Cooperation Centre of the French Embassy in Costa Rica provided part of the operational costs of this research.

References

  1. Anderson JM, Ingram J (1993) Tropical soil biology and fertility. A handbook of methods. CAB International, Oxford (GBR), 221 ppGoogle Scholar
  2. Avila H, Harmand JM, Dambrine E, Jimenez F, Beer J, Oliver R (2004) Dinámica del nitrógeno en el sistema agroforestal Coffea arabica con Eucalyptus deglupta en la zona sur de Costa Rica. Agroforesteria en las Americas 41–42:83–91Google Scholar
  3. Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net N mineralization and nitrification in the presence and absence of shade trees. Agric, Ecosyst & Environ 48(2):107–113CrossRefGoogle Scholar
  4. Babbar LI, Zak DR (1995) Nitrogen loss from coffee agroecosystems in Costa Rica: leaching and denitrification in the presence and absence of shade trees. J Environ Qual 24(2):227–233CrossRefGoogle Scholar
  5. Barthes B, Azontonde A, Boli BZ, Prat C, Roose E (2000) Field-scale run-off and erosion in relation to topsoil aggregate stability in three tropical regions (Benin, Cameroon, Mexico). Eur J Soil Sci 51(3):485–495CrossRefGoogle Scholar
  6. Beer J, Muschler R, Somarriba E, Kass D (1998) Shade management in coffee and cacao plantations. Agroforest Syst 38(1–3):139–164Google Scholar
  7. Cahn MD, Bouldin DR, Cravo MD (1992) Nitrate sorption in the profile of an acid soil. Plant Soil 143:179–183CrossRefGoogle Scholar
  8. Carjaval JF (1984) Cafeto: Cultivo y Fertilisacion, 2nd edn. International Potash Institute, Switzerland, 254 ppGoogle Scholar
  9. Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J Trop Ecol 14:27–45CrossRefGoogle Scholar
  10. Crill PM, Keller M, Weitz A, Grauel B, Veldkamp E (2000) Intensive field measurements of nitrous oxide emissions from a tropical agricultural soil. Global Biogeochemical Cycles 14(1):85–95CrossRefGoogle Scholar
  11. Crouzet G (2003) Dynamique de l’azote dans les plantations agroforestières à café au Costa Rica. Distribution de racines fines et influence de l’arbre et de la fertilisation sur la lixiviation des nitrates, ENGREF/CNEARC, CATIE, CIRAD, 60 ppGoogle Scholar
  12. Duwig C, Becquer T, Clothier BE, Vauclin M (1998) Nitrate leaching through oxisols of the Loyalty Islands (New Caledonia) under intensified agricultural practices. Geoderma 84(1–3):29–43CrossRefGoogle Scholar
  13. Duwig C, Becquer T, Vogeler I, Vauclin M, Clothier BE (2000) Water dynamics and nutrient leaching through a cropped ferralsol in the Loyalty Islands (New Caledonia). J Environ Qual 29(3):1010–1019CrossRefGoogle Scholar
  14. Forsythe, Warren (1985) Física de Suelos: Manual de Laboratorio. San José, Costa Rica, IICAGoogle Scholar
  15. ICAFE-CICAFE (2000) Informe anual de labores 1999 ICAFE-CICAFE. Heredia, Costa Rica, 209 ppGoogle Scholar
  16. Imbach AC, Fassbender HW, Borel R, Beer J, Bonnemann A (1989a) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) and cacao with poro (Erythrina poeppigiana) in Costa Rica. IV: water balances, nutrient inputs and leaching. Agroforest Syst 8:267–287CrossRefGoogle Scholar
  17. Imbach AC, Fassbender HW, Borel R, Beer J, Bonnemann A (1989b) Sistemas agroforestales de café (Coffea arabica) con laurel (Cordia alliodora) y café con poro (Erythrina poeppigiana) en Turrialba, Costa Rica, 6: Balances hídricos e ingreso con lluvias y lixiviación de elementos nutritivos. Turrialba (IICA) 39(3):400–414Google Scholar
  18. Jussy JH, Colin-Belgrand M, Dambrine E, Ranger J, Zeller B, Bienaime S (2004) N deposition, N transformation and N leaching in acid forest soils. Biogeochemistry 69(2):241–262CrossRefGoogle Scholar
  19. Keller M, Veldkamp E, Weitz AM, Reiners WA (1993) Pasture age effects on soil-atmosphere trace gas exchange in a deforested area of Costa Rica. Nature 365:244–246CrossRefGoogle Scholar
  20. Kolberg RL, Westfall DG, Peterson GA (1999) Influence of cropping intensity and nitrogen fertilizer rates on in situ nitrogen mineralization. Soil Sci Soc Am J 63(1):129–134CrossRefGoogle Scholar
  21. Laclau JP, Deleporte P, Ranger J, Bouillet J, Kazotti G (2003) Nutrient dynamics throughout the rotation of Eucalyptus clonal stands in Congo. Ann Bot (London) 91(7):879–892CrossRefGoogle Scholar
  22. Lal R (1989) Agroforestry system and soil surface management of a tropical alfisol: II: water runoff, soil erosion, and nutrient loss. Agroforest Syst 8:97–111CrossRefGoogle Scholar
  23. Lee KH, Jose S (2006) Nitrogen mineralization in short-rotation tree plantations along a soil nitrogen gradient. Can J For Res (36):1236–1242Google Scholar
  24. Lehmann J, Lilienfein J, Rebel K, Lima SD, Wilcke W (2004) Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use Manage 20(2):163–172CrossRefGoogle Scholar
  25. Montagnini F, Bushbacher R (1989) Nitrification rates in two undisturbed tropical rainforests and three slash-and-burn sites of the Venezuelan Amazon. Biotropica (21):9–14Google Scholar
  26. Moutonnet P, Pagenel JF, Fardeau JC (1993) Simultaneous field measurement of Nitrate-nitrogen and matric pressure Heda. Soil Sci Soc Am J 27:1458–1462CrossRefGoogle Scholar
  27. Mulvaney RL (1996) Nitrogen-inorganic forms. In: Sparks DL (ed) Methods of soil analysis. Part 3: chemical methods. American Society of Agronomy, Madison WI, pp 1130–1135Google Scholar
  28. Qafoku NP, Sumner ME (2001) Retention and transport of calcium nitrate in variable charge subsoils. Soil Sci 166(5):297–307CrossRefGoogle Scholar
  29. Qafoku NP, Sumner ME, Radcliffe DE (2000) Anion transport in columns of variable charge subsoils: Nitrate and chloride. J Environ Qual 29(2):484–493CrossRefGoogle Scholar
  30. Renderos Durán RV, Harmand JM, Jiménez F, Kass D (2002) Contaminación del agua con nitratos en microcuencas con sistemas agroforestales de Coffea arabica con Eucalyptus deglupta en la Zona Sur de Costa Rica. Agroforesteria en las Américas 9(35–36):81–85Google Scholar
  31. Reynolds-Vargas JS, Richter DD (1995) Nitrate in groundwaters of the Central Valley, Costa Rica. Environ Int 21(1):71–79CrossRefGoogle Scholar
  32. Salas R, Bornemisza E, Zapata F, Chaves V, Rivera A (2002) Absorcion del fertilizante nitrogenado por la planta de café y su influencia sobre la contaminacion de las aguas subterraneas. In: Reynolds-Vargas J (ed) Manejo Integrado de Aguas Subterraneas. EUNED, San José, Costa Rica, pp 89–104Google Scholar
  33. Schaller M, Schroth G, Beer J, Jimenez F (2003) Species and site characteristics that permit the association of fast-growing trees with crops: the case of Eucalyptus deglupta as coffee shade in Costa Rica. For Ecol Manage 175(1–3):205–215CrossRefGoogle Scholar
  34. Schroth G, Kolbe D, Pity B, Zech W. (1995) Searching for criteria for the selection of efficient tree species for fallow improvement, with special reference to carbon and nitrogen. Nutrient Cycl Agroecosyst 42(1–3):297Google Scholar
  35. Schroth G, Salazar E, Da Silva Jr JP (2001) Soil nitrogen mineralization under tree crops and a legume cover crop in multi-strata agroforestry in central Amazonia: spatial and temporal patterns. Exp Agric 37:253–267CrossRefGoogle Scholar
  36. Summer ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part 3: Chemical methods. American Society of Agronomy, Madison WI, pp 1201–1229Google Scholar
  37. Vaast P, Van Kanten R, Siles P, Dzib B, Frank N, Harmand JM, Genard M (2005) Shade: a key factor for coffee sustainability and quality. In: Proceedings of the 20th International Conference on Coffee Science, Bangalore, India, October 2004, Association Scientifique Internationale du Café (ASIC), Paris, France, pp 887–896Google Scholar
  38. van Kanten R, Vaast P (2006) Transpiration of arabica coffee and associated shade tree species in sub-optimal, low altitude conditions of Costa Rica. Agroforest Syst 67(2):187–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jean-Michel Harmand
    • 1
  • Hector Ávila
    • 2
  • Etienne Dambrine
    • 3
  • Ute Skiba
    • 4
  • Sergio de Miguel
    • 5
  • Reina Vanessa Renderos
    • 2
  • Robert Oliver
    • 6
  • Francisco Jiménez
    • 2
  • John Beer
    • 2
  1. 1.Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD)UR Ecosystèmes de plantations, S/C UR SeqBio – IRD (SupAgro)Montpellier cedex 01France
  2. 2.Centro Agronómico Tropical de Investigación y Enseñensa (CATIE)TurrialbaCosta Rica
  3. 3.Institut de la Recherche Agronomique (INRA)Biogéochimie des écosystèmes forestiersChampenouxFrance
  4. 4.Centre of Ecology and Hydrology (CEH)PenicuikScotland, UK
  5. 5.Forest Technology Centre of Catalonia (CTFC)SolsonaSpain
  6. 6.Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD)UR Risque environnemental lié au recyclageMontpellier cedex5France

Personalised recommendations