, Volume 83, Issue 1–3, pp 173–188

The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity

  • L. Seuront
  • C. Lacheze
  • M. J. Doubell
  • J. R. Seymour
  • V. Van Dongen-Vogels
  • K. Newton
  • A. C. Alderkamp
  • J. G. Mitchell
Original Paper


A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes.


Eastern English Channel Patchiness Phaeocystic globosa Plankton rheology Turbulence 


  1. Al-Hasan RH, Ali AM, Radwan SS (1990) Lipids, and their constituent fatty acids, of Phaeocystis sp. From the Arabian Gulf. Mar Biol 105:9–14CrossRefGoogle Scholar
  2. Alderkamp AC, Buma AGJ, van Rijssel M (2007) The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry, doi:10.1007/s10533-007-9078-2Google Scholar
  3. Alderkamp AC, Nejstgaard JC, Verity PG, Zirbel MJ, Sazhin AF, van Rijssel M (2005) Dynamics in carbohydrate composition of Phaeocystis pouchetii colonies during spring blooms in mesocosm. J Sea Res 55:169–181CrossRefGoogle Scholar
  4. Andreassen IJ, Wassman P (1998) Vertical flux of phytoplankton and particulate biogenic matter in the marginal zone of the Barents Sea in May 1993. Mar Ecol Prog Ser 170:1–14Google Scholar
  5. Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696CrossRefGoogle Scholar
  6. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263Google Scholar
  7. Brylinski JM, Lagadeuc Y, Gentilhomme V, Dupont JP, Lafite R, Dupeuple PA, Huault MF, Auger Y, Puskaric E, Wartel M, Cabioch L (1991) Le ‘fleuve côtier’: un phénomène hydrologique important en Manche orientale (exemple du Pas de Calais). Oceanol Acta 11:197–203Google Scholar
  8. Buskey EJ 1998. Components of mating behavior in planktonic copepods. J Mar Syst 15:13–21CrossRefGoogle Scholar
  9. Cartamil DP, Lowe CG (2004) Diel movement patterns of ocean sunfish Mola mola off southern California. Mar Ecol Prog Ser 266:245–253Google Scholar
  10. Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572CrossRefGoogle Scholar
  11. Decho A, Fleeger J (1988) Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. J Exp Mar Biol Ecol 118:229–243CrossRefGoogle Scholar
  12. Dekshenieks MM, Donaghay PL, Sullivan JM, Rines JEB, Osborn TR, Twardowski MS (2001) Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar Ecol Prog Ser 223:61–71Google Scholar
  13. Dreyfuss R (1962) Note biologique à propos des eaux rouges. Cah Cent Rech Biol Océanogr Méd Nice 1:14–15Google Scholar
  14. Geary RC (1954) The contiguity ratio and statistical mapping. Incop Statist 5:115–145CrossRefGoogle Scholar
  15. Janse I, van Rijssel M, Ottema A, Gottschal JC (1999) Microbial breakdown of Phaeocystis mucopolysaccharides. Limnol Oceanogr 44:1447–1457CrossRefGoogle Scholar
  16. Jenkinson IR (1986) Oceanographic implications of non-Newtonian properties found in phytoplankton cultures. Nature 323:435–437CrossRefGoogle Scholar
  17. Jenkinson IR (1993) Bulk-phase viscoelastic properties of seawater. Oceanol Acta, 16:317–334Google Scholar
  18. Jenkinson IR, Biddanda BA (1995) Bulk-phase viscoelastic properties of seawater: relationship with plankton components. J Plankton Res 17:2251–2274CrossRefGoogle Scholar
  19. Jenkinson IR, Wyatt T, Malej T (1998) How viscoelastic effects of colloidal biopolymers modify rheological properties of seawater. In: Emri I, Cvelbar R (eds) Proceedings of the 5th European Rheology Conference, Portoroz, Slovenia, September 6–11, 1998, Progress and Trends in Rheology 5:57–58Google Scholar
  20. Koike I, Shigemitsu H, Kazuki T, Kogure K (1990) Role of sub-micrometer particles in the ocean. Nature 345:242–244CrossRefGoogle Scholar
  21. Lancelot C, Billen G, Sournia A, Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassman P (1987) Phaeocystis blooms and nutrient enrichment in the continental zones of the North Sea. Ambio 16:38–46Google Scholar
  22. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New YorkGoogle Scholar
  23. Levin SA (1992) The problem of patterns and scale in ecology. Ecology 73:1943–1967CrossRefGoogle Scholar
  24. Logan BE, Passow U, Alldredge AL, Grossard HP, Simon M (1995) Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res 42:203–214CrossRefGoogle Scholar
  25. Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance. Harmful Algae 4:895–914CrossRefGoogle Scholar
  26. Martin AP (2003) Phytoplankton patchiness: the role of lateral stirring and mixing. Prog Oceanogr 57:125–174CrossRefGoogle Scholar
  27. Miyake Y, Koizumi M (1948). The measurements of the viscosity coefficient of sea water. J Mar Res 7:63–66Google Scholar
  28. Myklestad S (1974) Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J Exp Mar Biol Ecol 15:261–274CrossRefGoogle Scholar
  29. Myklestad SM (1988) Production, chemical structure, metabolism, and biological function of the (1,3)-linked, beta-d-glucans in diatoms. BiolOceanogr 6:313–326Google Scholar
  30. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23Google Scholar
  31. Peperzak L (2002) The wax and wane of Phaeocystis globosa blooms. Ph.D. Thesis, University of Groningen, The NetherlandGoogle Scholar
  32. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66CrossRefGoogle Scholar
  33. Seuront L (2005) Hydrodynamic and tidal controls of small-scale phytoplankton patchiness. Mar Ecol Prog Ser 302:93–101Google Scholar
  34. Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Physica A 313:513–539CrossRefGoogle Scholar
  35. Seuront L, Schmitt F, Lagadeuc Y (2001) Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here? Deep-Sea Res I 43:1199–1215Google Scholar
  36. Seuront L, Vincent D, Mitchell JG (2006) Biologically-induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J Mar Syst 61:118–133Google Scholar
  37. Seymour JR, Mitchell JG, Pearson L, Waters RL (2000) Heterogeneity in bacterioplankton abundance from 4.5 millimetre resolution sampling. Aquat Microb Ecol 22:143–153Google Scholar
  38. Sokal R, Oden N (1978a) Spatial autocorrelation in biology. I Methodology Biol J Linn Soc London 10:199–228Google Scholar
  39. Sokal R, Oden N (1978b) Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol J Linn Soc London 10:229–249Google Scholar
  40. Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research. Freeman, San FranciscoGoogle Scholar
  41. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Bd Canada 167:1–311Google Scholar
  42. Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J Oceanogr Soc Japan 46:190–194CrossRefGoogle Scholar
  43. Tiselius P (1992) Behavior of Acartia tonsa in patchy food environments. Limnol Oceanogr 8:1640–1651CrossRefGoogle Scholar
  44. Thingstad TF, Billen G (1994) Microbial degradation of Phaeocystis material in the water column. J Mar Syst 5:55–65CrossRefGoogle Scholar
  45. Turner JT, Ianora A, Esposito F, Carotenuto Y, Miralto A (2002) Zooplankton feeding ecology: does a diet of Phaeocystis support good copepod grazing, survival, egg production and egg hatching success? J. Plankton Res 24:1185–1195CrossRefGoogle Scholar
  46. van Rijssel M, Janse I, Noordkamp DJB, Gieskes WWC (2000) An inventory of factors that affect polysaccharide production by Phaeocystis globosa. J Sea Res 43:297–306CrossRefGoogle Scholar
  47. Verity PG, Medlin LK (2003) Observations on colony formation by the cosmopolitan phytoplankton genus Phaeocystis. J Mar Syst 43:153–164CrossRefGoogle Scholar
  48. Waters RL, Mitchell JG, Seymour JR (2003) Geostatistical characterisation of centimetre-scale spatial stucture of in vivo fluorescence. Mar Ecol Prog Ser 251:49–58Google Scholar
  49. Zar JH (1996) Biostatistical analysis. Prentice Hall, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • L. Seuront
    • 1
    • 2
  • C. Lacheze
    • 1
  • M. J. Doubell
    • 2
  • J. R. Seymour
    • 3
  • V. Van Dongen-Vogels
    • 4
  • K. Newton
    • 2
  • A. C. Alderkamp
    • 5
  • J. G. Mitchell
    • 2
  1. 1.CNRS FRE 2816 ELICO, Station Marine de WimereuxUniversity of Sciences and Technologies of Lille-Lille 1WimereuxFrance
  2. 2.School of Biological SciencesFlinders UniversityAdelaideAustralia
  3. 3.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Marine Biology LaboratoryCatholic University of LouvainLouvain-La-NeuveBelgium
  5. 5.Department of Marine BiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations