Biogeochemistry

, Volume 80, Issue 3, pp 205–216

Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic

  • Sofie Sjögersten
  • René van der Wal
  • Sarah J. Woodin
Article

Abstract

We explored the influence of small-scale spatial variation in soil moisture on CO2 fluxes in the high Arctic. Of five sites forming a hydrological gradient, CO2 was emitted from the three driest sites and only the wettest site was a net sink of CO2. Soil moisture was a good predictor of net ecosystem exchange (NEE). Higher gross ecosystem photosynthesis (GEP) was linked to higher bryophyte biomass and activity in response to the moisture conditions. Ecosystem respiration (Re) rates increased with soil moisture until the soil became anaerobic and then Re decreased. At well-drained sites Re was driven by GEP, suggesting substrate and moisture limitation of soil respiration. We propose that spatial variability in soil moisture is a primary driver of NEE.

Keywords

High Arctic Carbon dioxide fluxes Spatial variability Soil moisture Vegetation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billings WD, Kuken JO, Mortensen DA, Peterson KM (1982) Arctic Tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53:7–11CrossRefGoogle Scholar
  2. Bliss LC, Matveyeva NV (1992) Circumpolar arctic vegetation. In: Chapin FS, III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, New York, USA, pp 59–89Google Scholar
  3. Cheng WX, Virginia PA, Oberbauer SF, Gillespie CT, Reynolds JF, Tenhunen JD (1998) Soil nitrogen, microbial biomass, and respiration along an arctic toposequence. Soil Sci Soc Am J 62:654–662CrossRefGoogle Scholar
  4. Christensen TR, Michelsen A, Jonasson S, Schmidt IK (1997) Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations. Oikos 79:34–44CrossRefGoogle Scholar
  5. Christensen TR, Jonasson S, Callaghan TV, Havstrom M, Livens FR (1999) Carbon cycling and methane exchange in Eurasian tundra ecosystems. Ambio 28:239–244Google Scholar
  6. Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S (2000) Trace gas exchange in a high-arctic valley 1. Variation in CO2 and CH4 flux between tundra vegetation types. Global Biogeochem Cycles 14:701–713CrossRefGoogle Scholar
  7. Fan SM, Wofsy SC, Bakwin PS, Jacob DJ (1992) Micrometerological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J Geophys Res 97:D15, 16.627–16.643Google Scholar
  8. Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport 1: model development. Agric For Meteorol 95:225–236CrossRefGoogle Scholar
  9. Giblin AE, Nadlehoffer KJ, Shaver GR, Laundre JA and McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol Monogr 61:415–435CrossRefGoogle Scholar
  10. Gold WB, Bliss LC (1995) Water limitation and plant community development in a polar desert. Ecology 76:1558–1568CrossRefGoogle Scholar
  11. Heikkinen JEP, Elsakov V, Martikainen PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochem Cycles 16(4):1115, doi:10.1029/2002GB001930CrossRefGoogle Scholar
  12. Hobbie SH and Chapin FS, III (1998). The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–1544CrossRefGoogle Scholar
  13. Illeris L, Michelsen A, Jonasson S (2003) Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry 65:15–29CrossRefGoogle Scholar
  14. Illeris L, Christensen TR, Mastepanov M (2004) Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem. Biogeochemistry 70:317–332CrossRefGoogle Scholar
  15. Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadlehoffer K, Giblin A, Laundre J, Stanley A (2000). Plant Carbon–nutrient interactions control CO2 exchange in Alaskan wet tundra ecosystems. Ecology 81:453–469CrossRefGoogle Scholar
  16. Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, Powlson D (2005) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11: 154–166, doi: 10.1111/j.1365-2486.2004.00885Google Scholar
  17. Jones MH, Fahnestock JT, Walker DA, Walker MD, Welker JM (1998) Carbon dioxide fluxes in moist and dry arctic tundra during the snow-free season: responses to increases in summer temperature and winter snow accumulation. Arctic Alpine Res 30:373–380CrossRefGoogle Scholar
  18. Kirschbaum MUF (1995) The temperature-Dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biology & Biochemistry 27: 753–760Google Scholar
  19. Latter PM, Howson G, Howard DM, Scott WA (1998) Long-term study of litter decomposition on a Pennine peat bog: which regression? Oecologia 113:94–103CrossRefGoogle Scholar
  20. Lloyd CR (2001) The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. Global Change Biol 7:405–426CrossRefGoogle Scholar
  21. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS® system for mixed models. SAS Institute Inc., Cary, NCGoogle Scholar
  22. Longton RE (1997) The role of bryophytes and lichens in polar ecosystems. In: Woodin SJ, Marquiss M (eds) Ecology of Arctic environments. British Ecological Society nr 13, pp 69–96Google Scholar
  23. McFadden JP, Eugster W, Chapin FS, III, (2003) A regional study on water vapor and CO2 exchange in arctic tundra. Ecology 84:2762–2776Google Scholar
  24. McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: empirical and processed-based estimates. J Biogeogr 22:785–796CrossRefGoogle Scholar
  25. Muc M, Freedman B, Svoboda J (1989) Vascular plant-communities of a polar oasis at Alexandra fiord (79-degrees-n), Ellesmere Island, Canada. Can J Bot 67:1126–1136Google Scholar
  26. Muraoka H, Uchida M, Mishio M, Nakatsubo T, Kanda H, Koizumi H (2002) Leaf photosynthetic characteristics and net primary production of the polar willow (Salix polaris) in a high arctic polar semi-desert, Ny-Alesund, Svalbard. Can J Bot 80:1193–1202CrossRefGoogle Scholar
  27. Oechel WC, Collins NJ (1976) Comparative CO2 exchange in mosses from two tundra habitats at Barrow, Alaska. Can J␣Bot 54:1355–1369CrossRefGoogle Scholar
  28. Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin FS, III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds), Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, New York, USA, pp 139–167Google Scholar
  29. Oechel WC, Cook AC, Hastings SJ, Vourlitis GL (1997) Effects of CO2 and climate change on arctic ecosystems. In: Woodin SJ, Maquiss M (eds) Ecology of Arctic environments. The British Ecological Society nr 13, pp␣255–274Google Scholar
  30. Ostendorf B (1996) Modeling the influence of hydrological processes on spatial and temporal patterns of CO2 soil efflux from an arctic tundra catchment. Arctic Alpine Res 28:318–327CrossRefGoogle Scholar
  31. Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JL (1994) Growth responses of four sub-arctic dwarf shrubs species to simulated climate change. J Ecol 82:307–318CrossRefGoogle Scholar
  32. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar
  33. Potter JA, Press MC, Callaghan TV, Lee JA (1995) Growth responses of Polytricum commune and Hylocomium splendens to simulated environmental change in the sub-arctic. New Phytol 131:533–541CrossRefGoogle Scholar
  34. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001. The scientific basis. The intergovernmental panel on climate changeGoogle Scholar
  35. Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79:856–866CrossRefGoogle Scholar
  36. Rosswall T, Veum AK, Kärenlampi L (1975) Plant litter decomposition at Fennoscandian tundra sites. In: Wielgolaski FE (ed) Fennoscandian Tundra ecosystems, Part 1, plants and microorganisms. Springer-Verlag, Berlin, pp 268–278Google Scholar
  37. Rustad LE, Cambell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  38. Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998) Biomass and CO2 flux in wet sedge tundras: response to nutrients, temperature, and light. Ecol Monogr 68:75–97CrossRefGoogle Scholar
  39. Sjögersten S, Wookey PA (2002) Climatic and resource quality controls on soil respiration across the forest-tundra ecotone in Swedish Lapland. Soil Biol Biochem 34:1633–1646CrossRefGoogle Scholar
  40. Sjögersten S, Wookey PA (2004) Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian mountains in relation to climate and soil conditions. Plant and Soil 262:215–227Google Scholar
  41. Soegaard H, Nordstroem C, Fribord T, Hansen BU, Christensen TR, Bay C (2000) Trace gas exchange in a high arctic valley 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. Global Biogeochem cycles 14:725–744CrossRefGoogle Scholar
  42. Sommerkorn M, Bölter M, Kappen L (1999) Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsula: controlling factors and contribution to net system fluxes. Polar Res 18:253–260CrossRefGoogle Scholar
  43. Svensson BH, Christensen TR, Johansson E, Öquist M (1999) Interdecadal changes in CO2 and CH4 fluxes of a subarctic mire: Stordalen revisited after 20 years. Oikos 85:22–30CrossRefGoogle Scholar
  44. Uchida M, Muraoka H, Nakatsubo T, Bekku Y, Ueno T, Kanda H, Koizumi H (2002) Net photosynthesis, respiration, and production of the moss Sanionia uncinata on a glacier foreland in the high Arctic, Ny-Álesund, Svalbard. Arctic, Antarctic, Alpine Res 34:287–292CrossRefGoogle Scholar
  45. van der Wal R, Pearce ISK, Brooker RW (2005) Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142:159–168CrossRefGoogle Scholar
  46. Vourlitis GL, Oechel WC (1997) Landscape-scale CO2, H2O vapor and energy flux of moist-wet coastal tundra ecosystems over two growing seasons. J Ecol 85:575–590CrossRefGoogle Scholar
  47. Welker JM, Fahnestock JT, Henry G, O’Dea KW, Chimner RA (2004) CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming.␣Global Change Biol 10:1981–1995, doi:10.1111/j.1365–2486.2004.00857.xCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Sofie Sjögersten
    • 1
    • 3
  • René van der Wal
    • 2
  • Sarah J. Woodin
    • 1
  1. 1.Plant and Soil Science, School of Biological SciencesUniversity of AberdeenAberdeenUK
  2. 2.Centre of Ecology and Hydrology BanchorBanchory, AberdeenshireUK
  3. 3.Division of Agriculture and Environmental Science, School of BiosciencesUniversity of NottinghamNottinghamUK

Personalised recommendations