Biogeochemistry

, Volume 79, Issue 1–2, pp 61–89

Human activities changing the nitrogen cycle in Brazil

  • Solange Filoso
  • Luiz Antonio Martinelli
  • Robert W. Howarth
  • Elizabeth W. Boyer
  • Frank Dentener
Article

Abstract

The production of reactive nitrogen worldwide has more than doubled in the last century because of human activities and population growth. Advances in our understanding of the nitrogen cycle and the impacts of anthropogenic activities on regional to global scales is largely hindered by the paucity of information about nitrogen inputs from human activities in fast-developing regions of the world such as the tropics. In this paper, we estimate nitrogen inputs and outputs in Brazil, which is the world’s largest tropical country. We determined that the N cycle is increasingly controlled by human activities rather than natural processes. Nitrogen inputs to Brazil from human activities practically doubled from 1995 to 2002, mostly because of nitrogen production through biological fixation in agricultural systems. This is in contrast to industrialized countries of the temperate zone, where fertilizer application and atmospheric deposition are the main sources of anthropogenic nitrogen. In Brazil, the production of soybean crops over an area of less than 20 million ha, was responsible for about 3.2 Tg N or close to one-third of the N inputs from anthropogenic sources in 2002. Moreover, cattle pastures account for almost 70% of the estimated 280×106 ha of agricultural land in Brazil and potentially fix significant amounts of N when well managed, further increasing the importance of biological nitrogen fixation in the nitrogen budget. Much of these anthropogenic inputs occur in the Brazilian savannah region (Cerrado), while more urbanized regions such as the state of São Paulo also have high rates of nitrogenous fertilizer inputs. In the Amazon, rates of anthropogenic nitrogen inputs are relatively low, but continuing conversion of natural forests into cattle pasture or secondary forests potentially add a significant amount of new nitrogen to Brazil given the vast area of the region. Better measurements of biological fixation rates in Brazil are necessary for improving the nitrogen budgets, especially at a more refined spatial scale.

Keywords

Agricultural expansion Amazon Brazil Cerrado Deforestation Nitrogen Nitrogen budget 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber J.D., Magill A.H., McNutty S.G., Boone R.D., Nadelhoffer K.J., Downs M. and Hallett R.A. (1995). Forest biogeochemistry and primary production altered by nitrogen saturation. Water, Air Soil Pollut. 85:1665–1670CrossRefGoogle Scholar
  2. Aber J.D., Goodale C.L., Ollinger S.V., Smith M., Magill A.H., Martin M.E., Hallet R.A. and Stoddard J.L. (2003). Is nitrogen deposition altering the nitrogen status of Northeastern forests?. BioScience 53:375–389CrossRefGoogle Scholar
  3. Alves B.J.R., Boddey R.M. and Urquiaga S. (2003). The success of BNF in soybean in Brazil. Plant Soil 252:1–9CrossRefGoogle Scholar
  4. Agriculture and Agrifood Canada. 2004. Opportunities in the food market in Brazil, [online] URL: http://www.atn-riae.agr.ca/latin/3795_e.htm
  5. ANA. Regiões Hidrográficas. Agência Nacional de Águas, [online] URL: http://www. ana.gov.br
  6. ANA. Water Resources Management in Brazil. Agência Nacional de Águas, [online] URL: http://www.hidroweb.ana.gov.br/
  7. ANDA. 2003. Estatísticas. Associação Nacional para Difusão de Adubos.[online] URL: http://www.anda.gov.brGoogle Scholar
  8. AQUASTAT. 2004. Food and Agriculture Organization of the United Nations, Information System on Water and Agriculture [online] URL: http://www.fao.org/
  9. Bernoux M. 2001. CO2 emissions from liming of agricultural soils in Brazil. Global Biogeochem. Cycles 17: Art. No. 1049Google Scholar
  10. Boddey R.M., Macedo R., Tarre R.M., Ferreira E., de Oliveira O.C., Rezende C.P., Cantarutti R.B., Pereira J.M., Alves B.J.R. and Urquiaga S. (2004). Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agric. Ecosys. Environ. 103:389–403CrossRefGoogle Scholar
  11. Boddey R.M., Sá J.C.M., Alves B.J.R. and Urquiaga S. (1997). The contribution of biological N fixation for sustainable agricultural systems in the tropics. Soil Biol. Biochem. 29:787–799CrossRefGoogle Scholar
  12. Boddey R.M., Urquiaga S., Alves B.J.R. and Reis V. (2003). Endophytic nitrogen fixation in sugarcare: present knowledge and future applications. Plant Soil 252:139–149CrossRefGoogle Scholar
  13. Boddey R.M., Urquiaga S., Reis V.M. and Döbereiner J. (1991). Biological nitrogen fixation associated with sugarcane. Plant Soil 137: 111–117CrossRefGoogle Scholar
  14. Boddey R.M. and Victoria R.L. (1986). Estimation of biological nitrogen-fixation associated with Brachiaria and Paspalum grasses using 15N labeled organic matter and fertilizer. Plant Soil 90:265–294CrossRefGoogle Scholar
  15. Bonetto C., Zalocar Y., Planas D. and Pedrozo F. (1991). Responses of phytoplankton to experimental nutrient enrichment in the Paraguay, Bermejo and upper Parana rivers. Trop. Ecol. 32:47–64Google Scholar
  16. Boyer E.W., Goodale C.L., Jaworski N.A. and Howarth R.W. (2002). Effects of anthropogenic nitrogen loading on riverine nitrogen export in the northeastern US. Biogeochemistry 57 & 58:137–169CrossRefGoogle Scholar
  17. Bustamante M.M.C., Nardoto G.B., Martinelli L.A. (2004) Aspectos Comparativos Del Ciclaje De Nutrientes Entre Bosques Amazónicos De Terra-Firme Y Sabanas Tropicales (Cerrado Brasileiro). In: Hernán Marino Cabrera (eds) Fisiología Ecológica En Plantas. Mecanismos y Respuestas a Estrés en los Ecosistemas. Ediciones Universitárias de Valparaiso, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile, pp. 189–205Google Scholar
  18. Cleveland C.C., Townsend A.R., Schimel D.S., Fisher H., Howarth R.W., Hedin L.O., Perakis S.S., Latty E.F., Von Fischer J.C., Elseroad A. and Wasson M.F. (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles 13:623–645CrossRefADSGoogle Scholar
  19. Costa M.H., Botta A. and Cardille J.A. (2003). Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 283:206–217CrossRefADSGoogle Scholar
  20. Dentener F.J. and Crutzen P.J. (1994). A three-dimentional model of the global ammonia cycle. J. Atmos. Chem. 19:331–369CrossRefGoogle Scholar
  21. Dobereiner J. (1997). Biological nitrogen fixation in the tropics: Social and economic contributions. Soil Biol. Biochem. 29:771–774CrossRefGoogle Scholar
  22. Downing J.A., McClain M., Twilley R., Melack J.M., Elser J., Rabalais N., Lewis W.M., Turner R.E., Corredor J., Soto D., Yanez-Aranciba A., Kopaska J.A. and Howarth R.W. (1999). The impact of accelerating land-use change on the N cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46:109–148Google Scholar
  23. EMBRAPA. 2002. Brazilian Agency of Agriculture and PecuaryGoogle Scholar
  24. FAOSTAT. 2004. Food and Agriculture Organization of the United Nations, Statistical Databases [online] URL: http://www.apps.fao.org/
  25. Fearnside P.M. 2005. Deforestation in Brazilian Amazonia: history, rates and consequences. Conservation Biology 19: 680–688Google Scholar
  26. Filoso S., Williams M.R. and Melack J.M. (1999). Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry 45:169–195Google Scholar
  27. Filoso S., Martinelli L.A., Williams M.R., Lara L.B., Krusche A., Ballester M.V., Victoria R.L. and Camargo P.B. (2003). Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry 65:275–294CrossRefGoogle Scholar
  28. Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C., Green P., Holland E., Karl D.M., Michaels A.F., Porter J.H., Townsend A. and Vorösmarty C. (2004). Nitrogen cycles: past and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  29. Galloway J.N. and Cowling E.B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71PubMedGoogle Scholar
  30. Galloway J.N., Schlesinger W.H., Levy H., II Michaels A. and Schnoor J.L. (1995). Nitrogen Fixation: Anthropogenic enhancement-environmental response. Global Biogeochem. Cycles 9:235–252CrossRefADSGoogle Scholar
  31. Howarth R.W., Boyer E.W., Pabich W.J. and Galloway J.N. (2002). Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31:88–96PubMedGoogle Scholar
  32. Howarth R.W. anderson D., Cloern J., Elfring E., Hopkinson C., Lapointe B., Malone T., Marcus N., McGlathery K., Sharpley A. and Walker D. (2000). Nutrient pollution of coastal rivers, bays, and seas. Issues Ecol. 7:1–15Google Scholar
  33. Howarth R.W., Billen G., Swaney D., Townsend A., Jarworski N., Lajtha K., Downing J.A., Elmgren R., Caraco N., Jordan T., Berendse F., Freney J., Kueyarov V., Murdoch P. and Zhu Zhao-liang (1996). Riverine inputs of nitrogen to the North Atlantic Ocean: fluxes and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  34. IBGE. 2004. Levantamento sistemático da produção agrícola. Instituto Brasileiro de Geografia e Estatística, [online] URL: http://www.ibge.gov.br/
  35. SIDRA/IBGE. 2004. Sistema IBGE de Recuperação Automática, Banco de Dados Agregados, Instituto Brasileiro de Geografia e Estatística, [online] URL: http://www.sidra.ibge.gov.br/bda/popul/
  36. INPE. 2004. Monitoramento da floresta Amazonica brasileira por satelite – Projeto PRODES. Instituto Nacional de Pesquisas Espaciais, [online] URL: http://www.obt.inpe.br/prodes/
  37. Keller M., Palace M., Asner G.P., Pereira R. and Silva J.N.M. (2004). Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Global Change Biol. 10:784–795CrossRefGoogle Scholar
  38. Laurance W.F., Albernaz A.K.M., Fearnside P.M., Vasconcelos H.L. and Ferreira L.V. (2004). Deforestation in Amazonia. Science 304(5674):1109–1111PubMedCrossRefGoogle Scholar
  39. Lara L.S., Artaxo P. and Martinelli L.A. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmos. Environ. 35:4937–4945CrossRefGoogle Scholar
  40. Lelieveld J. and Dentener F. 2000. What controls tropospheric ozone? J. Geophys. Res. 105: 3531–3551Google Scholar
  41. Lesack L.F. and Melack J.M. 1991. The deposition, composition, and potential sources of major ionic solutes in rain of the central Amazon basin. Water Resourc. Res. 27: 2953–2977Google Scholar
  42. Lewis W.M., Melack J.M., McDowell W.H., McClain M. and Richey J. (1999). Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46:149–162CrossRefGoogle Scholar
  43. Machado R., Ramos-Neto M, Pereira P.G., Caldas E., Gonçalves D., Santos N., Tabor K. and Steininger M. 2004. Estimativas de perda da área do Cerrado brasileiro. Relatório Técnico. Conservation International – Brazil, Brasília-DF., 23 ppGoogle Scholar
  44. Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., Mcdowell W., Robertson G.P., Santos O.C. and Treseder K. (1999). Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65Google Scholar
  45. Martinelli L.A., Almeida S., Brown I.F., Moreira M.Z., Victoria R.L., Filoso S., Ferreira C.A.C. and Thomas W.W. (2000). Variation in nutrient distribution in a humid tropical forest in Rondônia, Brazil. Biotropica 32:597–613CrossRefGoogle Scholar
  46. Marufu L., Dentener F., Lelieveld J. Andreae M.O. and Helas G. 2000. Photochemistry of the African troposphere: the influence of biomass burning emissions. J. Geophys. Res. 105: 14513–14530Google Scholar
  47. Matson P.A., McDowell W.H., Townsend A.R. and Vitousek P.M. (1999). The globalization of N deposition: Ecosystem consequences in tropical environments. Biogeochemistry 46:67–83Google Scholar
  48. Matson P.A., Lohse K.A. and Hall S.J. (2002). The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31:113–119PubMedGoogle Scholar
  49. Melillo J.M., Steudler P.A., Feigl B.J., Neill C., Garcia D., Piccolo M.C., Cerri C.C. and Tian H. (2001). Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J. Geophys. Res. Atmos. 106: 34179–34188CrossRefADSGoogle Scholar
  50. Miranda C.H.B. and Boddey R.M. (1987). Estimation of biological nitrogen fixation with 11 ecotypes of Panicum maximum grown in nitrogen-15 labeled soil. Agron. J. 79:558–563CrossRefGoogle Scholar
  51. Mostasso L., Mostasso F.L., Dias B.G., Vargas M.T. and Hungria H. 2002. Selection of bean (Phseoulus vulgaris L.) rhizobial strans for the Brazilian Cerrados. Field Crops Res. 73: 121–132Google Scholar
  52. Müeller C.C. and Bustamante M. 2002. Análise da expansão da soja no Brasil. [online] URL: http://www.worldbank.org/rfpp/news/debates/mueller.pdfGoogle Scholar
  53. Müeller M.L., Guimarães M.F., Desjardins T. and Mitja D. 2004. The relationship between pasture degradation and soil properties in the Brazilian Amazon: a case study. Agric. Ecosys. Environ. 103: 279–288Google Scholar
  54. Nardoto G.B. and Bustamante M.C. (2003). Effects of fire on soil nitrogen dynamics and microbioal biomass in savannas of Central Brazil. Pesq. Agropec. Bras. 38: 955–962CrossRefGoogle Scholar
  55. Neff J.C., Holland E.A., Dentener F.J. McDowell W.H. and Russell K.M. 2002. The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57/58: 99–136Google Scholar
  56. Neill C., Piccolo M.C., Cerri C.C., Steudler P.A., Melillo J.M. and Brito M. (1997). Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110: 243–252CrossRefGoogle Scholar
  57. Nepstad D.C., Verissimo A., Alencar A., Nobre C., Lima E., Lefebvre P., Schlesinger P., Potter C., Mouthinho P., Mendoza E., Cochrane M., and Brooks V. 1999. Nature 398: 505–508Google Scholar
  58. NRC (2000). Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DCGoogle Scholar
  59. Oliveira M.W., Trivelin P.C.O., Gava G.J.C. and Vitti A.C. (1999). Lixiviação de nitrogênio em solo cultivado com cana-de-açúcar: experimento em lisímetro. Stab. Álcool, Açúcar e Sub-produtos 18: 28–31Google Scholar
  60. Pedrozo F. and Bonetto C. (1987). Influence of river regulation on nitrogen and phosphorus mass transport in a large South American river. Regul. Rivers Res. Manage. 4: 59–70Google Scholar
  61. Peoples M., Gault R., Lean B., Sykes J. and Brockwell J. (1995). Nitrogen fixation by soybean in commercial irrigated crops in Central and Southern New South Wales. Soil Biol. Biochem. 27:553–561CrossRefGoogle Scholar
  62. Pinto A.S., Bustamante M.C., Kisselle K., Burke R., Zepp R., Viana L.T., Varella R.F. and Molina M. (2002). Soil emissions of N2O, NO, and CO2 in Brazilian savannas: Effects of vegetation type, seasonality, and prescribed fires. J. Geophys. Res. 107: 8089, doi: 10.1029./2001 JD000342CrossRefGoogle Scholar
  63. POTAFOS-Brasil. 2004. Consumo de fertilizantes. Potash and Phosphate Institute of Brazil. [online] URL: http://www.potafos.org/ppiweb/brazil.nsfGoogle Scholar
  64. Rabalais N.N. (2002). Nitrogen in aquatic ecosystems. Ambio 31:102–112PubMedGoogle Scholar
  65. Ratter J.A., Ribeiro J.F. and Bridgewater S. (1997). The Brazilian Cerrado vegetation and threats to its biodiversity. Ann. Bot. 80: 223–230CrossRefGoogle Scholar
  66. Rodhe H., Dentener F. and Schulz M. (2002). The global distribution of acidifying wet deposition. Environ. Sci. Tech. 36:4382–4388CrossRefGoogle Scholar
  67. Seitzinger S.P., Kroeze C., Bouwman A.F., Caraco N., Dentener F. and Styles R.V. (2002). Global Patterns of dissolved and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries 25:640–655CrossRefGoogle Scholar
  68. Smil V. (1999). Nitrogen in crop production: an account of global flows. Global Biogeochem. Cycles 13:647–662CrossRefADSGoogle Scholar
  69. Smil V. (2001). Enriching the Earth. MIT Press, Cambridge, MassachusettsGoogle Scholar
  70. Urquiaga S., Cruz K.H.S. and Boddey R.M. (1992). Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen balance estimates. Soil Sci. Soc. Am. 22: 104–114Google Scholar
  71. USDA. 2003. Brazil: Future Agricultural Expansion Potential Underrated. United States Department of Agriculture, Production Estimates and Crop Assessment Division, Foreign Agricultural Service. [online] URL: http://www.fas.usda.gov/pecad/highlights/2003/01/Ag_expansion/index.htm
  72. Villar C.A., de Cabo L., Vaithiyanathan P. and Bonetto C. (1998). River-floodplain interactions: nutrient concentrations in the Lower Parana River. Archiv fur Hydrobioligie 142:433–450Google Scholar
  73. Vitousek P.M. and Field C.B. (1999). Ecosystem constrains to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46:179–202Google Scholar
  74. Williams M.R. and Melack J.M. (1997). Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38:67–102CrossRefGoogle Scholar
  75. Yoneyama T., Muraoka T., Kim T.H., Dacanay E.V., Nakanishi Y. (1997). The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Phillippines and Myako, Japan. Plant Soil 189:239–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Solange Filoso
    • 1
  • Luiz Antonio Martinelli
    • 2
  • Robert W. Howarth
    • 1
  • Elizabeth W. Boyer
    • 3
  • Frank Dentener
    • 4
  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  2. 2.Centro de Energia Nuclear na AgriculturaUniversity of São PauloPiracicabaBrazil
  3. 3.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  4. 4.Joint Research Centre, Institute for Environment and Sustainability, Climate Change UnitIspra (Va)Italy

Personalised recommendations