Biogeochemistry

, Volume 76, Issue 2, pp 349–371 | Cite as

A River's Liver – Microbial Processes within the Hyporheic Zone of a Large Lowland River

  • Helmut Fischer
  • Frank Kloep
  • Sabine Wilzcek
  • Martin T Pusch
Article

Abstract

Little is known on microbial activities in the sediments of large lowland rivers despite of their potentially high influence on biogeochemical budgets. Based on field measurements in a variety of sedimentary habitats typical for a large lowland river (Elbe, Germany), we present results on the abundance and production of sedimentary bacteria, the potential activity of a set of extracellular enzymes, and potential nitrification and denitrification rates. A diving bell was used to access the sediments in the central river channel, enabling us to sample down to 1 m sediment depth. Depth gradients of all measures of microbial activity were controlled by sediment structure, hydraulic conditions, as well as by the supply with organic carbon and nitrogen. Microbial heterotrophic activity was tightly coupled with the availability of carbon and nitrogen, whereas chemolithotrophic activity (nitrification rate) was related to the available surface area of particles. In the central bed of the river, bacterial production and extracellular enzyme activity remained high down to the deepest sediment layers investigated. Due to the large inner surface area and their connectivity with the surface water, the shifting sediments in the central channel of the river were microbially highly active There, vertically integrated bacterial production amounted to 0.95 g C m−3 h−1, which was 2.9 to 5.5 times higher than in the nearshore habitats. We conclude that carbon and nitrogen cycling in the river is controlled by the live sediments of the central river channel, which thus represent a “liver function” in the river's metabolism.

Keywords

Bacteria Hyporheic Large river Metabolism Sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R.B., Smith, R.A., Schwarz, G.E. 2000Effect of stream channel size on the delivery of nitrogen to the Gulf of MexicoNature403758761CrossRefGoogle Scholar
  2. Allan, J.D. 1995Stream Ecology. Structure and Function of Running WatersChapman & HallLondonGoogle Scholar
  3. Baker, M.A., Dahm, C., Valett, H.M. 1999Acetate retention and metabolism in the hyporheic zone of a mountain streamLimnol. Oceanogr.4415301539Google Scholar
  4. Bastviken, D., Ejlertsson, J., Tranvik, L. 2001Similar bacterial growth on dissolved organic matter in anoxic and oxic lake waterAquat. Microb. Ecol.244149Google Scholar
  5. Bastviken, D., Olsson, M., Tranvik, L. 2003Simultaneous measurements of bacterial production and organic carbon mineralization in oxic and anoxic lake sedimentsMicrob. Ecol.467382CrossRefGoogle Scholar
  6. Battin, T.J. 2000Hydrodynamics is a major determinant of streambed biofilm activity: from the sediment to the reach scaleLimnol. Oceanogr.4513081319Google Scholar
  7. Behrendt, H., Opitz, D. 1999Retention of nutrients in river systems: dependence on specific runoff and hydraulic loadHydrobiologia410111122CrossRefGoogle Scholar
  8. Belser, L.W., Mays, E.L. 1980Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soil and sedimentsAppl. Environ. Microbiol.39505510Google Scholar
  9. Benner, R., Lay, J., K'nees, E., Hodson, R.E. 1988Carbon conversion efficiency for bacterial growth on lignocellulose: implications for detritus-based food websLimnol. Oceanogr.3315141526Google Scholar
  10. Bou, C., Rouch, R. 1967Un nouveau champ de recherches sur la faune aquatique souterraineComptes Rendus Académie des Sciences Paris265369370Google Scholar
  11. Brunke, M., Fischer, H. 1999Hyporheic bacteria – relationships to environmental gradients and invertebrates in a prealpine streamArch. Hydrobiol.146189217Google Scholar
  12. Brunke, M., Gonser, T. 1997The ecological significance of exchange processes between rivers and groundwatersFreshwat. Biol.377133Google Scholar
  13. Brunke, M., Sukhodolov, A., Fischer, H., Wilczek, S., Engelhardt, C., Pusch, M. 2002Benthic and hyporheic habitats of a large lowland river (ElbeGermany): influence of river engineeringVerh. Internat. Verein. Limnol.28153156Google Scholar
  14. Carling, P.A., Williams, J.J., Gölz, E., Kelsey, A.D. 2000The morphodynamics of fluvial sand dunes in the River Rhinenear Mainz, Germany. II. Hydrodynamics and sediment transportSedimentology47253278Google Scholar
  15. Chappell, K.R., Goulder, R. 1994Seasonal variation of epilithic extracellular enzyme activity in three diverse headstreamsArch. Hydrobiol.130195214Google Scholar
  16. Chrost, R.J. 1991

    Environmental control of the synthesis and activity of aquatic microbial ectoenzymes

    Chrost, R.J. eds. Microbial Enzymes in Aquatic EnvironmentsSpringerNew York4250
    Google Scholar
  17. Church, M. 2002Geomorphic thresholds in riverine landscapesFreshwat. Biol.47541558Google Scholar
  18. Dahlke S. and Remde A. 1998. Denitrifikation. In: Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) (ed), Mikrobiologische Charakterisierung aquatischer Sedimente: Methodensammlung. R. Oldenbourg Verlag, München, pp. 122–140.Google Scholar
  19. Dahm, C.N., Grimm, N.B., Marmonier, P., Valett, H.M., Vervier, P. 1998Nutrient dynamics at the interface between surface waters and groundwatersFreshwat. Biol.40427451Google Scholar
  20. DEW1985Deutsche Einheitsverfahren zur Wasser-, Abwasser- und SchlammuntersuchungVerlag ChemieWeinheimGoogle Scholar
  21. Elliott, A.H., Brooks, N.H. 1997Transfer of nonsorbing solutes to a streambed with bed forms: theoryWater Resour. Res.33123136Google Scholar
  22. Fischer, H., Pusch, M. 1999Use of the [14C]leucine incorporation technique to measure bacterial production in river sediments and the epiphytonAppl. Environ. Microbiol.6544114418Google Scholar
  23. Fischer, H., Pusch, M. 2001Comparison of bacterial production in sediments, epiphyton, and the pelagic zone of a lowland riverFreshwat. Biol.4613351348Google Scholar
  24. Fischer, H., Sukhodolov, A., Wilczek, S., Engelhardt, C. 2003Effects of flow dynamics and sediment movement on microbial activity in a lowland riverRiver Res. Appl.19473482Google Scholar
  25. Fischer, H., Wanner, S.C., Pusch, M. 2002Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM)Biogeochemistry613755CrossRefGoogle Scholar
  26. Fisher, S.G., Grimm, N.B., Marti, E., Holmes, R.M., Jones, J.B. 1998Material spiraling in stream corridors: a telescoping ecosystem modelEcosystems11934CrossRefGoogle Scholar
  27. García-Ruiz, R., Pattinson, S.N., Whitton, B.A. 1998Denitrification in river sediments: relationship between process rate and properties of water and sedimentFreshwat. Biol.39467476Google Scholar
  28. Gieseke, A., Purkhold, U., Wagner, M., Amann, R., Schramm, A. 2001Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilmAppl. Environ. Microbiol.6713511362CrossRefGoogle Scholar
  29. Hedin, L.O., von Fischer, J.C., Ostrom, N.E., Kennedy, B.P., Brown, M.G., Robertson, G.P. 1998Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfacesEcology79684703Google Scholar
  30. Hinkle, S.R., Duff, J.H., Triska, F.J., Laenen, A., Gates, E.B., Bencala, K.E., Wentz, D.A., Silva, S.R. 2001Linking hyporheic flow and nitrogen cycling near the Willamette River - a large river in Oregon, USAJ. Hydrol.244157180CrossRefGoogle Scholar
  31. Hoppe, H.-G. 1993

    Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria

    Kemp, P.F.Sherr, B.F.Sherr, E.B. eds. Handbook of Methods in Aquatic Microbial EcologyLewis PublishersBoca Raton423431
    Google Scholar
  32. Kaplan, L.A., Bott, T.L. 1989Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: Effects of temperaturewater chemistry, and habitatLimnol. Oceanogr.34718733Google Scholar
  33. Kaplan, L.A., Newbold, J.D. 2003

    The role of monomers in stream ecosystem metabolism

    Findlay, S.E.G.Sinsabaugh, R.L. eds. Aquatic Ecosystems. Interactivity of Dissolved Organic MatterAcademic PressSan Diego97119
    Google Scholar
  34. Kirchman, D.L. 1993

    Leucine incorporation as a measure of biomass production by heterotrophic bacteria

    Kemp, P.F.Sherr, B.F.Sherr, E.B. eds. Handbook of Methods in Aquatic Microbial EcologyLewis PublishersBoca Raton509512
    Google Scholar
  35. Kristensen, E., Ahmed, S.I., Devol, A.H. 1995Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest?Limnol. Oceanogr.4014301437Google Scholar
  36. Lefebvre, S., Marmonier, P., Pinay, G. 2004Stream regulation and nitrogen dynamics in sediment interstices: comparison of natural and straightened sectors of a third-order streamRiver Res. Applic.20499512CrossRefGoogle Scholar
  37. Marxsen, J. 2001Bacterial production in different streambed habitats of an upland stream: sandy versus coarse gravelly sedimentsArch. Hydrobiol.152543565Google Scholar
  38. Marxsen, J., Fiebig, D.M. 1993Use of perfused cores for evaluating extracellular enzyme-activity in stream-bed sedimentsFEMS Microbiol. Ecol.13111Google Scholar
  39. Marxsen J., Tippmann P., Heininger P., Preuß G. and Remde A. 1998. Enzymaktivität. In: Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) (ed), Mikrobiologische Charakterisierung aquatischer Sedimente: Methodensammlung. R. Oldenbourg Verlag, München, pp. 87–114.Google Scholar
  40. Moran, M.A., Sheldon, W.M.,Jr, Sheldon, J.E. 1999Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United StatesEstuaries225564Google Scholar
  41. Patureau, D., Zumstein, E., Delgenes, J.P., Moletta, R. 2000Aerobic denitrifiers from diverse natural and managed ecosystemsMicrob. Ecol.39145152CrossRefGoogle Scholar
  42. Porter, K.G., Feig, Y.S. 1980The use of DAPI for identifying and counting aquatic microfloraLimnol. Oceanogr.25943948Google Scholar
  43. Pusch, M., Fiebig, D., Brettar, I., Eisenmann, H., Ellis, B.K., Kaplan, L.A., Lock, M.A., Naegeli, M.W., Traunspurger, W. 1998The role of micro-organisms in the ecological connectivity of running watersFreshwat. Biol.40453495Google Scholar
  44. Raymond, P.A., Bauer, J.E. 2001Riverine export of aged terrestrial organic matter to the North Atlantic OceanNature409497500CrossRefGoogle Scholar
  45. Richardson, W.B., Strauss, E.A., Bartsch, L.A., Monroe, E.M., Cavanaugh, J.C., Vingum, L., Soballe, D.M. 2004Denitrification in the Upper Mississippi River: rates, controls, and contribution to nitrate fluxCan. J. Fish. Aquat. Sci.6111021112CrossRefGoogle Scholar
  46. Romaní, A., Marxsen, J. 2002Extracellular enzymatic activities in epilithic biofilms of the Breitenbach: microhabitat differencesArch. Hydrobiol.155541555Google Scholar
  47. Rutherford, J.C., Latimer, G.J., Smith, R.K. 1993Bedform mobility and benthic oxygen uptakeWat. Res.2715451558CrossRefGoogle Scholar
  48. Sauer, W., Schmidt, A. 2001Die Bedeutung suspendierten Sandes für die Sohlhöhenentwicklung der ElbeWasserwirtschaft91443449Google Scholar
  49. Seitzinger, S.P., Nielsen, L.P., Caffrey, J., Christensen, P.B. 1993Denitrification measurements in aquatic sediments: a comparison of three methodsBiogeochemistry23147167CrossRefGoogle Scholar
  50. Seitzinger, S.P., Styles, R.V., Boyer, E.W., Alexander, R.B., Gillen, B., Howarth, R.W., Mayer, B., van Breemen, N. 2002Nitrogen retention in rivers: model development and application to watersheds in the northeastern USABiogeochemistry5799237Google Scholar
  51. Sheibley, R.W., Duff, J.H., Jackman, A.P., Triska, F.J. 2003Inorganic nitrogen transformations in the bed of the Shingobee RiverMinnesota: Integrating hydrologic and biological processes using sediment perfusion coresLimnol. Oceanogr.4811291140CrossRefGoogle Scholar
  52. Simon, M., Azam, F. 1989Protein content and protein synthesis rates of planktonic marine bacteriaMar. Ecol. Prog. Ser.51201213Google Scholar
  53. Sinsabaugh, R.L., Findlay, S. 1995Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River EstuaryMicrobial Ecol.30127141CrossRefGoogle Scholar
  54. Sinsabaugh, R.L., Linkins, A.E. 1988Exoenzyme activity associated with lotic epilithonFreshwat. Biol.20249261Google Scholar
  55. Sobczak, W.V., Findlay, S., Dye, S. 2003Relationships between DOC bioavailability and nitrate removal in a mountain stream: an experimental approachBiogeochemistry62309327CrossRefGoogle Scholar
  56. Sørensen, J. 1978Denitrification rates in a marine sediment as measured by the acetylene inhibition techniqueAppl. Environ. Microbiol.36139143Google Scholar
  57. Stanford, J.A., Ward, J.V. 1993An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridorJ. N. Am. Benthol. Soc.124860Google Scholar
  58. Storey, R.G., Fulthorpe, R.R., Williams, D.D. 1999Perspectives and predictions on the microbial ecology of the hyporheic zoneFreshwat. Biol.41119130Google Scholar
  59. Strauss, E.A., Lamberti, G.A. 2000Regulation of nitrification in aquatic sediments by organic carbonLimnol. Oceanogr.4518541859CrossRefGoogle Scholar
  60. Thorp, J.H., Delong, M.D. 2002Dominance of autochthonous autotrophic carbon in food webs of heterotrophic riversOikos96543550CrossRefGoogle Scholar
  61. Tiedje, J.M. 1988

    Ecology of denitrification and dissimilatory nitrate reduction to ammonium

    Zehnder, A.J.M. eds. Biology of anaerobic bacteriaWileyNew York179244
    Google Scholar
  62. Townsend, C.R. 1996Concepts in river ecology: pattern and process in the catchment hierarchyArch. Hydrobiol. Suppl.113321Google Scholar
  63. Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., Cushing, C.E. 1980The river continuum conceptCan. J. Fish. Aquat. Sci.37130137CrossRefGoogle Scholar
  64. Vervier, P., Dobson, M., Pinay, G. 1993Role of interaction zones between surface and ground waters in DOC transport and processing: considerations for river restorationFreshwat. Biol.29275284Google Scholar
  65. Ward, J.V. 1989The four-dimensional nature of lotic ecosystemsJ. N. Am. Benthol. Soc.828Google Scholar
  66. Ward, J.V., Tockner, K., Uehlinger, U., Malard, F. 2001Understanding natural patterns and processes in river corridors as the basis for effective river restorationRegul. Rivers: Res. Manage.17311323Google Scholar
  67. Webster, J.R., Meyer, J.L. 1997Organic matter budgets for streams: a synthesisJ. N. Am. Benthol. Soc.16141161Google Scholar
  68. Wilczek, S., Fischer, H., Brunke, M., Pusch, M.T. 2004Microbial activity within a subaqueous dune in a large lowland river (ElbeGermany)Aquat. Microb. Ecol.368397Google Scholar
  69. Wilczek S., Fischer H. and Pusch M.T. in press. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river. Microb. Ecol. (in press).Google Scholar
  70. Wolff C. and Remde A. 1998. Autotrophe Nitrifikation. In: Vereinigung für Allgemeine und Angewandte Mikrobiologie (ed), Mikrobiologische Charakterisierung aquatischer Sedimente: Methodensammlung. R. Oldenbourg Verlag, München, pp. 156–170.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Helmut Fischer
    • 1
    • 2
  • Frank Kloep
    • 3
    • 4
  • Sabine Wilzcek
    • 1
  • Martin T Pusch
    • 1
  1. 1.Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Federal Institute of HydrologyKoblenzGermany
  3. 3.Institute of MicrobiologyDresden University of TechnologyDresdenGermany
  4. 4.Boehringer Ingelheim PharmaIngelheimGermany

Personalised recommendations