Biogeochemistry

, Volume 80, Issue 1, pp 21–41 | Cite as

The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition

  • Amanda Ash Dasch
  • Joel D. Blum
  • Christopher Eagar
  • Timothy J. Fahey
  • Charles T. Driscoll
  • Thomas G. Siccama
Article

Abstract

The use of strontium isotopes and ratios of alkaline earth elements (i.e., 87Sr/86Sr and Ca/Sr) to trace Ca sources to plants has become common in ecosystem studies. Here we examine the relative uptake of Ca and Sr in trees and subsequent accumulation in foliage. Using a whole-watershed Ca addition experiment at the Hubbard Brook Experimental Forest in N.H., we measured the uptake of Ca relative to Sr in foliage and roots of sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), American beech (Fagus grandifolia), and red spruce (Picea rubens). Vegetation was analyzed for Ca and Sr concentrations and the 87Sr/86Sr ratio. A comparison of the Ca/Sr ratio in the vegetation and the Ca/Sr ratio of the applied mineral allows for the calculation of a discrimination factor, which defines whether Ca and Sr are incorporated and allocated in the same ratio as that which is available. A discrimination factor greater than unity indicates preferential uptake of Ca over Sr; a factor less than unity reflects preferential uptake of Sr over Ca. We demonstrate that sugar maple (SM) and yellow birch (YB) have similar and small discrimination factors (1.14 ± 0.12,1σ and 1.16 ± 0.09,1σ) in foliage formation and discrimination factors of less than 1 in root formation (0.55–0.70). Uptake into beech suggests a larger discrimination factor (1.9 ± 1.2) in foliage but a similar root discrimination factor to SM and YB (0.66 ± 0.06,1σ). Incorporation into spruce foliage occurs at a much slower rate than in these other tree species and precludes evaluation of Ca and Sr discrimination in spruce foliage at this time. Understanding the degree to which Ca is fractionated from Sr in different species allows for refinement in the use of 87Sr/86Sr and Ca/Sr ratios to trace Ca sources to foliage. Methods from this study can be applied to natural environments in which various soil cation pools have different 87Sr/86Sr and Ca/Sr ratios. The results reported herein have implications for re-evaluating Ca sources and fluxes in forest ecosystems.

Keywords

Acer saccharum Acid deposition Betula alleghaniensis Biocycling Ca Fagus grandifolia Foliage Sr isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberg, G. 1995The use of natural strontium isotopes as tracers in environmental studiesWater Air Soil Pollut.79309322CrossRefGoogle Scholar
  2. Aberg, G., Jacks, G., Hamilton, P.J. 1989Weathering rates and 87Sr/86Sr ratios: an isotopic approachJ. Hydrol.1096578CrossRefGoogle Scholar
  3. Baes, A.U., Bloom, P.R. 1988Effect of ionic-strength on swelling and the exchange of alkaline-earth cations in soil organic-matterSoil Sci.1466772CrossRefGoogle Scholar
  4. Bailey S.W. and Hornbeck J.W. 1992. Res. Paper NE-662. Lithologic composition and rock weathering potential of forested, glacial-till soils 1992. USDA Forest ServiceNortheast Forest Experimental Station, Radnor, PA, USA.Google Scholar
  5. Bailey, S.W., Hornbeck, J.W., Driscoll, C.T., Gaudet, H.E. 1996Calcium inputs and transport in a base-poor forest ecosystem as interpreted by strontium isotopesWater Res. Res.32707719CrossRefGoogle Scholar
  6. Barton C.C., Camerlo R.H. and Bailey S.W. 2000. Bedrock Geologic Map of Hubbard Brook Experimental Forest. 1997. U.S. Department of Interior, U.S. Geological Survey, Miscellaneous Investigation Series Map I-2562.Google Scholar
  7. Blum, J.D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson, C.E., Siccama, T.G., Eagar, C., Fahey, T.J., Likens, G.E. 2002Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystemsNature417729731CrossRefGoogle Scholar
  8. Blum, J.D., Taliaferro, E.H., Weisse, M.T., Holmes, R.T. 2000Changes in Sr/CaBa/Ca and Sr-87/Sr-86 ratios between trophic levels in two forest ecosystems in the northeastern USABiogeochemistry4987101CrossRefGoogle Scholar
  9. Bruggenwert, M.G.M., Kamphorst, A. 1982

    Survey of experimental information on cation exchange in soil systems

    Bolt, G.H. eds. Soil Chemistry, B. Physico-Chemical ModelsElsevierAmsterdam141203
    Google Scholar
  10. Bullen, T.D., Bailey, S.W. 2005Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotopealkaline earth element multi-tracer approachBiogeochemistry746399CrossRefGoogle Scholar
  11. Capo, R.C., Stewart, B.W., Chadwick, O.A. 1998Strontium isotopes as tracers of ecosystem processes: theory and methodsGeoderma82197225CrossRefGoogle Scholar
  12. Collander, R. 1941Selective absorption of cations by higher plantsPlant Physiol.16691720CrossRefGoogle Scholar
  13. Driscoll, C.T., Johnson, N.M., Likens, G.E., Feller, M.C. 1988Effects of acid deposition on the chemistry of headwater streams - a comparison between Hubbard BroohNew Hampshireand Jamieson CreehBritish ColumbiaWater Res. Res.24195200Google Scholar
  14. Elias, R.W., Hirao, Y., Patterson, C.C. 1982The circumvention of the natural biopurification along nutrient pathways by atmospheric inputs of industrial leadGeochimi. Cosmochim. Acta.4625612580CrossRefGoogle Scholar
  15. Fahey, T.J.,  et al. 2005Soil respiration and soil carbon balance in a northern hardwood forest ecosystemCan. J. For. Res.35244253CrossRefGoogle Scholar
  16. Faure G. 1986. Principles of Isotope Geology. Wiley J. and Sons.Google Scholar
  17. Federer, C.A.,  et al. 1989Long-term depletion of calcium and other nutrients in eastern U.S. forestsEnviron. Manage.13593601CrossRefGoogle Scholar
  18. Ferguson, E.B., Bollard, E.G. 1976Movement of calcium in woody stemsAnn. Bot. Lond.4010571065Google Scholar
  19. Graustein, W.C., Armstrong, R.L. 1983The use of strontium-87/strontium-8 ratios to measure atmospheric transport into forested watershedsScience219289292Google Scholar
  20. Hall, R.O.,  et al. 2001Biogeochemical responses of two forest streams to a 2-month calcium additionFreshw. Biol.46291302CrossRefGoogle Scholar
  21. Hoffland, E., Giesler, R., Jongmans, A.G., Breemen, N. 2003Feldspar tunneling by fungi along natural productivity gradientsEcosystems6739746CrossRefGoogle Scholar
  22. Hogan J.F. and Blum J.D. 2003. Tracing hydrologic flow paths in a small forested watershed using variations in (87)Sr(86)Sr[Ca]/[Sr], [Ba]/[Sr] and Delta O-18. Water Res. Res. 39.Google Scholar
  23. Huntington, T.G.,  et al. 2000Calcium depletion in a southeastern United States forest ecosystemSoil Sci. Soc. Am. J.6418451858CrossRefGoogle Scholar
  24. Isermann, K. 1981

    Uptake of stable strontium by plants and effects on plant growth

    Skoryna, S.C. eds. Handbook of Stablec StrontiumPlenum PressNew York6586
    Google Scholar
  25. Johnson, C.E., Johnson, A.H., Huntington, T.G., Siccama, T.G. 1991Whole-tree clear-cutting effects on soil horizons and organic-matter poolsSoil Sci. Soc. Am. J.55497502CrossRefGoogle Scholar
  26. Johnson, C.E., Driscoll, C.T., Siccama, T.G., Likens, G.E. 2000Element fluxes and landscape position in a northern hardwood forest watershed ecosystemEcosystems3159184CrossRefGoogle Scholar
  27. Jongmans, A.G.,  et al. 1997Rock-eating fungiNature389682683CrossRefGoogle Scholar
  28. Likens, G.E.,  et al. 2004Buffering an acidic stream in New Hampshire with a silicate mineralRestor. Ecol.12419428CrossRefGoogle Scholar
  29. Likens, G.E., Driscoll, C.T., Buso, D.C. 1996Long-term effects of acid rain: Response and recovery of a forest ecosystemScience272244246Google Scholar
  30. Likens, G.E.,  et al. 1994The biogeochemistry of potassium at Hubbard BrookBiogeochemistry2561125CrossRefGoogle Scholar
  31. Likens, G.E.,  et al. 1998The biogeochemistry of calcium at Hubbard BrookBiogeochemistry4189173CrossRefGoogle Scholar
  32. Lovett, G.M., Thompson, A.W., Anderson, J.B., Bowser, J.J. 1999Elevational patterns of sulfur deposition at a site in the Catskill Mountains, New YorkAtmos. Environ.33617624CrossRefGoogle Scholar
  33. Menzel, R. G., Heald, W. R. 1955Distribution of potassiumrubidiumcaesiumcalcium adn strontium within plants grown in nutrient solutionsSoil Sci.80287293(abstr.)Google Scholar
  34. Miller, E.K., Blum, J.D., Friedland, A.J. 1993Determination of soil exchangeable-cation loss and weathering rates using Sr isotopesNature362438441CrossRefGoogle Scholar
  35. Momoshima, N., Bondietti, E.A. 1990Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruceCan. J. For. Res.2018401849Google Scholar
  36. Nezat, C.A., Blum, J.D., Klaue, A., Johnson, C.E. 2004Influence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental Forest, New Hampshire, USAGeochim. Cosmochim. Acta.6830653078CrossRefGoogle Scholar
  37. Peters, S.C., Blum, J.D., Driscoll, C.T., Likens, G.E. 2004Dissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1Biogeochemistry67309329CrossRefGoogle Scholar
  38. Poszwa, A., Dambrine, E., Pollier, B., Atteia, O. 2000A comparison between Ca and Sr cycling in forest ecosystemsPlant Soil.225299310CrossRefGoogle Scholar
  39. Poszwa, A.,  et al. 2004Variations of bioavailable Sr concentration and 87Sr/86Sr ratios in boreal forest ecosystems Role of biocycling, mineral weathering and epth of root uptakeBiogeochemistry67120CrossRefGoogle Scholar
  40. Runia, L.T. 1987Strontium and calcium distribution in plants: effect on paleodietary studiesJ. Archaeol. Sci.14599608CrossRefGoogle Scholar
  41. Smits, M.M., Hoffland, E., Jongmans, A.G., Breemen, N. 2005Contribution of mineral tunneling to total feldspar weatheringGeoderma1255969CrossRefGoogle Scholar
  42. Sposito, G. 1989The Chemistry of Soils. 277Oxford University PressNew YorkGoogle Scholar
  43. Tierney, G.L., Fahey, T.J. 2002Fine root turnover in a Northern Hardwood Forest: a direct comparison of the radiocarbon and minirhizotron methodsCan. J. Forest Research-Revue Canadienne De Recherche Forestiere3216921697CrossRefGoogle Scholar
  44. Breemen, N.,  et al. 2000Mycorrhizal weathering: a true case of mineral plant nutrition?Biogeochemistry495367CrossRefGoogle Scholar
  45. Veresoglou, D.S.,  et al. 1996Shoot Sr concentrations in relation to shoot Ca concentrations and to soil propertiesPlant Soil.17895100CrossRefGoogle Scholar
  46. Vitousek, P.M., Kennedy, M.J., Derry, L.A., Chadwick, O.A. 1999Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soilsOecologia121255259CrossRefGoogle Scholar
  47. Vitousek, P.M., Turner, D.R., Kitayama, K. 1995Foliar nutrients during long-term soil development in Hawaiian montane rainforestEcology76712720CrossRefGoogle Scholar
  48. Wallander, H., Hagerberg, D. 2004Do ectomycorrhizal fungi have a significant role in weathering of minerals in forest soil?Symbiosis37249257Google Scholar
  49. Watmough, S.A., Dillon, P.J. 2003aMycorrhizal weathering in base-poor forestsNature423823824CrossRefGoogle Scholar
  50. Watmough, S.A., Dillon, P.J. 2003bCalcium losses from a forested catchment in south-central OntarioCanadaEnviron. Sci. Technol.3730853089CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Amanda Ash Dasch
    • 1
  • Joel D. Blum
    • 1
  • Christopher Eagar
    • 2
  • Timothy J. Fahey
    • 3
  • Charles T. Driscoll
    • 4
  • Thomas G. Siccama
    • 5
  1. 1.Department of Geological SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Northeastern Research StationUSDA Forest ServiceDurhamUSA
  3. 3.Department of Natural ResourcesCornell UniversityIthacaUSA
  4. 4.Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseUSA
  5. 5.Yale School of Forestry and Environmental StudiesNew HavenUSA

Personalised recommendations