Biogeochemistry

, Volume 80, Issue 1, pp 89–108 | Cite as

Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments

  • Daniela Sauer
  • Loredana Saccone
  • Daniel J. Conley
  • Ludger Herrmann
  • Michael Sommer
Review article

Abstract

There is a variety of methodologies used in the aquatic sciences and soil sciences for extracting different forms of Si from sediments and soils. However, a comparison of the published extraction techniques is lacking. Here we review the methodologies used to extract different Si fractions from soils and sediments. Methods were classified in those to assess plant-available Si and those to extract Si from amorphous silica and allophane. Plant-available Si is supposed to comprise silicic acid in soil solution and adsorbed to soil particles. Extraction techniques for plant-available Si include extractions with water, CaCl2, acetate, acetic acid, phosphate, H2SO3, H2SO4, and citrate. The extractants show different capabilites to desorb silicic acid, with H2SO3, H2SO4 and citrate having the greater extraction potential. The most common extractants to dissolve amorphous silica from soils and aquatic sediments are NaOH and Na2CO3, but both also dissolve crystalline silicates to varying degrees. In soils moreover Tiron is used to dissolve amorphous silica, while oxalate is used to dissolve allophanes and imogolite-type materials. Most techniques analyzing for biogenic silica in aquatic environments use a correction method to identify mineral derived Si. By contrast, in the soil sciences no correction methods are used although pedologists are well aware of the overestimation of amorphous silica by the NaOH extraction, which is most commonly used to extract silica from soils. It is recommended that soil scientists begin to use the techniques developed in the aquatic sciences, since it seems impossible to extract amorphous Si from soils completely without dissolving some of the crystalline silicates.

Keywords

Adsorbed silica Alkaline extraction methods Amorphous silica Biogenic silica Dissolved silica Silicic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acquaye, D., Tinsley, J. 1965

    Soluble silica in soils

    Hallsworth, E.G.Crawford, D.V. eds. Experimental PedologyProceedings of the Eleventh Easter School in Agricultural Science, University of Nottingham, 1964Butterworths, London126148
    Google Scholar
  2. Arnseth, R.W., Turner, R.S. 1988Sequential extraction of iron, manganesealuminium and silicon in soil from two contrasting watershedsSoil Sci. Soc. Am. J.5218011807CrossRefGoogle Scholar
  3. Ayres, A.S. 1966Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soilsSoil Sci.101216227Google Scholar
  4. Beckwith, R.S., Reeve, R. 1963Studies on soluble silica in soils. I. The sorption of silicic acid by soils and mineralsAust. J. Soil Res.1157168CrossRefGoogle Scholar
  5. Beckwith, R.S., Reeve, R. 1964Studies on soluble silica in soils. II. The release of monosilicic acid from soilsAust. J. Soil Res.23345CrossRefGoogle Scholar
  6. Berthelsen S., Noble A.D. and Garside A.L. 2001. Silicon research down under: pastpresent and future. In: Datnoff L.E., Snyder G.H. and Korndörfer G.H. (eds), Silicon Deposition in Higher Plants. Silicon in Agriculture. Elsevier Science, pp. 241–255.Google Scholar
  7. Biermans, V., Baert, L. 1977Selective extraction of the amorphous Al, Fe and Si oxides using an alkaline Tiron solutionClay Minerals12127135Google Scholar
  8. Breuer J. 1994. Hartsetzende Böden Nordkameruns. Ph.D. Thesis. Soil Science Department, Technical University of Munich – Weihenstephan, Germany, 189 pp. Google Scholar
  9. Breuer, J., Herrmann, L. 1999Eignung der Extraktion mit Natriumbikarbonat für die Charakterisierung von bodenbildenden ProzessenMittlg. Dtsch. Bodenk. Ges.9113751378Google Scholar
  10. Conley, D.J. 1998An interlaboratory comparison for the measurement of biogenic silica in sedimentsMarine Chem.633948CrossRefGoogle Scholar
  11. Conley, D.J., Schelske, C.L. 2001

    Biogenic silica

    Smol, J.P.Birks, H.J.B.Last, W.M. eds. Tracking Environmental Changes in Lake Sediments: Volume 3: Terrestrial, Algal, and Siliceous IndicatorsKluwer Academic PublishersDordrecht281293
    Google Scholar
  12. Conley D.J., Sommer M., Meunier J.D., Kaczorek D. and Saccone L. 2005. Silicon in the terrestrial biogeosphere. In: Ittekot V., Humborg C. and Garnier J. (eds), Land–Ocean Nutrient Fluxes: Silica Cycle. SCOPE, in press.Google Scholar
  13. Conway, H.L., Parker, J.I., Yaguchi, E.M., Mellinger, D.L. 1977Biological utilization and regeneration of silicon in Lake MichiganJ. Fish. Res. Board Can.34537544Google Scholar
  14. Datnoff, L.E., Snyder, G.H., Korndörfer, G.H. 2001Silicon in AgricultureElsevierAmsterdamGoogle Scholar
  15. Lima Rodrigues, L., Daroub, S.H., Rice, W.R., Snyder, G.H. 2003Comparison of three soil test methods for estimating plant-available siliconCommun. Soil Sci. Plant Anal.3420592071CrossRefGoogle Scholar
  16. DeMaster D.J. 1979. The marine budgets of silica and 32Si. Ph.D. Dissertation, Yale University, 308 pp.Google Scholar
  17. DeMaster D.J. 1981. The supply and accumulation of silica in the marine environments. Geochim. Cosmochim. Acta: 1715–1732.Google Scholar
  18. DeMaster D.J. 1991. Measuring biogenic silica in marine sediments and suspended matter. Geophysical Monograph 63, America Geophysical Union, pp. 363–367.Google Scholar
  19. Derry, L.A., Kurtz, A.C., Ziegler, K., Chadwick, O.A. 2005Biological control of terrestrial silica cycling and export fluxes to watershedsNature433728731CrossRefGoogle Scholar
  20. Dietzel, M. 2000Dissolution of silicates and the stability of polysilicic acidGeochim. Cosmochim. Acta6432753281CrossRefGoogle Scholar
  21. Dietzel, M. 2002

    Interaction of polysilicic and monosilicic acid with mineral surfaces

    Stober, I.Bucher, K. eds. Water–Rock InteractionKluwerThe Netherlands207235
    Google Scholar
  22. Drees, L.R., Wilding, L.P., Smeck, N.E., Sankayi, A.L. 1989

    Silica in soils: quartz and disordered silica polymorphs

    Dixon, J.B.Weed, S.B. eds. Minerals in Soil EnvironmentsSoil Science Society of America Book Series No. 1Madison, WI, USA913974
    Google Scholar
  23. Ewing, H.A., Nater, E.A. 2002Holocene soil development on Till and Outwash inferred from Lake-Sediment Geochemistry in Michigan and WisconsinQuatern. Res.57234243CrossRefGoogle Scholar
  24. Eggiman, D.W., Manheim, F.T., Betzer, P.R. 1980Dissolution and analysis of amorphous silica in marine sedimentsJ. Sed. Petr.51215225Google Scholar
  25. Epstein, E. 1994The anomaly of silicon in plant biologyProc. Natl. Acad. Sci.911117CrossRefGoogle Scholar
  26. Farmer, V., Delbos, E., Miller, J.D. 2005The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streamsGeoderma1277179CrossRefGoogle Scholar
  27. Follett, E.A.C., McHardy, W.J., Mitchell, B.D., Smith, B.F.L. 1965Chemical dissolution techniques in the study of soil clays: Part IClay Minerals62334Google Scholar
  28. Foster, M.D. 1953The determination of free silica and free alumina in montmorillonitesGeochim. Cosmochim. Acta3143154CrossRefGoogle Scholar
  29. Fox, R.L., Silva, J.A., Younge, O.R., Pluncknett, D.L., Sherman, G.D. 1967Soil and plant silicon and silicate response by sugarcaneSoil Sci. Soc. Am. Proc.31775779CrossRefGoogle Scholar
  30. Gérard, F., François, M., Ranger, J. 2002Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (RhôneFrance)Geoderma107197226CrossRefGoogle Scholar
  31. Grasshoff, K., Ehrhardt, M., Kremling, K. 1983Methods of Seawater Analysis2Verlag ChemieWeinheim417Google Scholar
  32. Hansen, H.C.B., Raben-Lange, B., Raulund-Rasmussen, K., Borggaard, O.K. 1994Monosilicate adsorption by ferrihydrite and goethite at pH 3–6Soil Sci.1584046Google Scholar
  33. Hashimoto J. and Jackson M.L. 1960. Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Proceedings of the 7th Nat. Conf. Clays and Clay Minerals, Washington, DC, October 20–23, 1958, pp. 102–113.Google Scholar
  34. Haysom, M.B.C., Chapman, L.S. 1975Some aspects of the calcium silicate trials at MackayProc. Austr. Sugar Cane Technol.42117122Google Scholar
  35. Herbauts, J., Dehalu, F.A., Gruber, W. 1994Quantitative determination of plant opal content in soils, using a combined method of heavy liquid separation and alkali dissolutionEur. J. Soil Sci.45379385CrossRefGoogle Scholar
  36. Herrmann, L., Stahr, K. 1995Die Verwitterung lößähnlicher Saharastäube: Ein ModellexperimentMittlgn. Dtsch. Bodenkundl. Gesellsch.76/II14331436Google Scholar
  37. Hurney, A.P. 1973A progress report on the calcium silicate investigationsProc. Aust. Sugar Cane Technol.40109113Google Scholar
  38. Hydes, D.J., Liss, P.S. 1976Fluorimetric method for the determination of low concentratios of dissolved aluminium in natural watersAnalyst10922931CrossRefGoogle Scholar
  39. Iler, R.K. 1979The Chemistry of SilicaWiley and SonsNew York621Google Scholar
  40. Imaizumi, K., Yoshida, S. 1958Edaphological studies on silicon supplying power of paddy soilsBull. Natl. Inst. Agric. Sci. (Jpn.) B8261304Google Scholar
  41. Jones, R.L. 1969Determination of opal in soil by alkali dissolution analysisSoil Sci. Soc. Am. Proc.33976978CrossRefGoogle Scholar
  42. Jones, R.L., Beavers, A.H. 1964Aspects of catenary and depth distribution of opal phytoliths in Illinois soilsSoil Sci. Soc. Am. Proc.28413416CrossRefGoogle Scholar
  43. Karathanasis A.D. 1989. Solution chemistry of Fragipans-thermodynamic approach to understanding Fragipan formation. In: Fragipans: their OccurrenceClassification, and Genesis. SSSA Spec. Pub. 24: 113–139.Google Scholar
  44. Kelly, E.F., Chadwick, O.A., Hilinski, T.E. 1998The effects of plants on mineral weatheringBiogeochemistry422153CrossRefGoogle Scholar
  45. Kendrick, K.J., Graham, R.C. 2004Pedogenic silica accumulation in chronosequence soils, southern CaliforniaSoil Sci. Soc. Am. J.6812951303CrossRefGoogle Scholar
  46. Khalid, R.A., Silva, J.A., Fox, R.L. 1978Residual effects of calcium silicate in tropical soils: II. Biological extraction of residual soil siliconSoil Sci. Soc. Am. J.429497CrossRefGoogle Scholar
  47. Knight C.T.G. and Kinrade S.D. 2001. A primer on the aqueous chemistry of silicon. In: Datnoff L.E., Snyder G.H. and Korndörfer G.H. (eds.), Silicon in Agriculture. Elsevier Science B.V., pp. 57–84.Google Scholar
  48. Kodama, H., Ross, G.J. 1991Tiron dissolution method used to remove and characterize inorganic components in soilsSoil Sci. Soc. Am. J.5511801187CrossRefGoogle Scholar
  49. Koning, E., Epping, E., Raaphorst, W. 2002Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutionsAquat. Geochem.83767CrossRefGoogle Scholar
  50. Korndörfer, G.H., Coelho, M.N., Snyder, G.H., Mizutani, C.T. 1999Avaliação de métodos de extração de silício para solos cultivados com arroz de sequeiroRev. Bras. Ci. Solo. Viçosa/MG23101106Google Scholar
  51. Korndörfer, G.H., Lepsch, I. 2001

    Effect of silicon on plant growth and crop yield

    Datnoff, L.E.Snyder, G.H.Korndörfer, G.H. eds. Silicon in AgricultureElsevier Science B.V.Amsterdam133147
    Google Scholar
  52. Krausse, G.L., Schelske, C.L., Davis, C.O. 1983Comparison of three wet-alkaline methods of digestion of biogenic silica in waterFreshwater Biol.137381CrossRefGoogle Scholar
  53. Ma, J.F. 2003

    Functions of Silicon in Higher Plants

    Müller, W.E.G. eds. Silicon BiomineralizationSpringerBerlin127160
    Google Scholar
  54. Ma, J.F., Miyake, Y., Takahashi, E. 2001

    Silicon as a beneficial element for crop plants

    Datnoff, L.E.Snyder, G.H.Korndörfer, G.H. eds. Silicon in AgricultureElsevier Science B.V.Amsterdam1739
    Google Scholar
  55. Matichencov V.V. and Bocharnikova E.A. 2001. The relationship between silicon and soil physical and chemical properties. In: Datnoff L.E., Snyder G.H. and Korndörfer G.H. (eds), Silicon in Agriculture. Elsevier Science B.V., pp. 209–219.Google Scholar
  56. McKeague, J.A., Cline, M.G. 1963aSilica in soil solutions. II. The adsorption of monosilicic acid by soil and by other substancesCan. J. Soil Sci.438396CrossRefGoogle Scholar
  57. McKeague, J.A., Cline, M.G. 1963bSilica in soil solutions. I. The form and concentration of dissolved silica in aqueous extracts of some soilsCan. J. Soil Sci.437082Google Scholar
  58. McKeyes, E., Sethi, A., Young, R.N. 1974Amorphous coatings on particles of sensitive clay soilsClays Clay Miner.22427433Google Scholar
  59. Mehra, O.P., Jackson, M.L. 1960

    Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate

    Swineford, A. eds. Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958Pergamon PressNew York317327
    Google Scholar
  60. Mortlock, R.A., Froelich, P.N. (1989)A simple method for the rapid determination of biogenic opal in pelagic marine sedimentsDeep-Sea Res.3614151426CrossRefGoogle Scholar
  61. Müller, P.J., Schneider, R. 1993An automated leaching method for the determination of opal in sediments and particulate matterDeep-Sea Res. I40425444CrossRefGoogle Scholar
  62. Müller, W.E.G. eds. 2003Silicon Biomineralization. Progress in Molecular and Subcellular Biology 33SpringerBerlin, Heidelberg340Google Scholar
  63. Nonaka, K., Takahashi, K. 1988A method of measuring available silicates in paddy soilsJpn. Agric. Res. Q.229195Google Scholar
  64. Nonaka, K., Takahashi, K. 1990A method of assessing the need of silicate fertilizers in paddy soilsXIV Int. Congr. Soil Sci., KyotoJpn.4513514Google Scholar
  65. Paasche, E. 1973Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrientMarine Biol.19117126CrossRefGoogle Scholar
  66. Paasche, E. 1980Silicon content of five marine plankton diatom species measured with a rapid filter methodLimnol. Oceanogr.25474480Google Scholar
  67. Piperno, D.R. 1988Phytolith Analysis: An Archaeological and Geological PerspectiveAcademic PressLondon280Google Scholar
  68. Ragueneau, O., Tréguer, P. 1994Determination of the biogenic silica in coastal waters: applicability and limits of the alkaline digestion methodMarine Chem.454351CrossRefGoogle Scholar
  69. Sauer D. and Burghardt W. 2000. Chemical processes in soils on artificial materials: silicate dissolution, occurrence of amorphous silica and zeolites. Proc. First Int. Conference on Soils of Urban, Industrial, Traffic and Mining Areas, Essen, July 12–18, 2000, vol. I, pp. 339–346.Google Scholar
  70. Sauer D. and Burghardt W. 2006. The Occurrence and Distribution of Various Forms of Silica and Zeolites in Soils Developed from Wastes of Iron Production. Accepted for publishing in Catena.Google Scholar
  71. Simmonsson, M., Berggren, D., Gustafson, J.P. 1999Solubility of aluminium and silica in spodic horizons as affected by drying and freezingSoil Sci. Soc. Am. J.6311161123CrossRefGoogle Scholar
  72. Schachtschabel, P., Heinemann, C.G. 1967Wasserlösliche Kieselsäure in LößbödenZ. Pflanzenern. Bodenk.1182235Google Scholar
  73. Schwertmann, U. 1964Differenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat lösungZ. Pflanzenern. Bodenk.105194202Google Scholar
  74. Snyder G.H. 1991. Development of a silicon soil test for Histosol-grown rice. EREC Res. Rpt., EV-1991–2, Univ. of Florida, Belle Glade, FL.Google Scholar
  75. Snyder G.H. 2001. Methods for silicon analysis in plants, soils, and fertilizer. In: Datnoff L.E., Snyder G.H., Korndörfer and G.H. (eds), Silicon in Agriculture. Elsevier Science B.V., pp. 185–207.Google Scholar
  76. Strekopytov, S., Exley, C. 2005The formation, precipitation and structural characterisation of hydroxyaluminosilicates formed in the presence of fluoride and phosphatePolyhedron2415851592CrossRefGoogle Scholar
  77. Sommer M., Kaczorek D., Kuzyakov Y. and Breuer J. 2006. Si pools and fluxes in soils - a review. Accepted for publishing in J. Plant Nutr. Soil Sci.Google Scholar
  78. Tamm, O. 1932Um bestämning ow de organiska komponenterna i markens gelkomplexMeddelanden Fran Statens Skogsförsöksanstalt19385404Google Scholar
  79. Tréguer, P., Nelson, D.M., Bennekorn, A.J., DeMaster, D.J., Leynaert, A., Quéguiner, B. 1995The silica balance in the world ocean: a reestimateScience268375379Google Scholar
  80. Tréguer, P., Pondaven, P. 2000Silica control of carbon dioxideNature406358359CrossRefGoogle Scholar
  81. Veerhoff, M., Brümmer, G.W. 1993Bildung schlechtkristalliner bis amorpher Verwitterungsprodukte in stark bis extreme versauerten WaldbödenZ. Pflanzenernähr. Bodenk.1561117Google Scholar
  82. Verma, S.D., Rust, R.H. 1969Observations on opal phytoliths in a soil biosequence in southeastern MinnesotaSoil Sci. Soc. Am. Proc.33749751CrossRefGoogle Scholar
  83. Wada, K., Greenland, D.J. 1970Selective dissolution and differential infrared spectroscopy for characterization of ‘amorphous’ constituents in soil claysClay Minerals8241254Google Scholar
  84. Wedepohl, K.H. 1995The composition of the continental crustGeochim. Cosmochim. Acta5912171232CrossRefGoogle Scholar
  85. Wong You Cheong, Y., Halais, P. 1970Needs of sugar cane for silicon when growing in highly weathered latosolsExp. Agric.699106CrossRefGoogle Scholar
  86. Yeck, R.D., Gray, F. 1972Phytolith size characteristics between Udolls and UstollsSoil Sci. Soc. Am. Proc.36639641CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniela Sauer
    • 1
  • Loredana Saccone
    • 2
  • Daniel J. Conley
    • 2
    • 3
  • Ludger Herrmann
    • 1
  • Michael Sommer
    • 4
  1. 1.Institute of Soil Science and Land Evaluation (310)University of HohenheimStuttgartGermany
  2. 2.Department of Marine EcologyNational Environmental Research InstituteRoskildeDenmark
  3. 3.Department of Marine EcologyUniversity of AarhusÅrhus NDenmark
  4. 4.Leibniz-Center for Agricultural Landscape ResearchInstitute of Soil Landscape ResearchMünchebergGermany

Personalised recommendations