Biogeochemistry

, Volume 76, Issue 2, pp 261–281 | Cite as

Detrital Controls on Soil Solution N and Dissolved Organic Matter in Soils: A Field Experiment

  • K. Lajtha
  • S. E. Crow
  • Y. Yano
  • S. S. Kaushal
  • E. Sulzman
  • P. Sollins
  • J. D. H. Spears
Article

Abstract

We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, USA, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the addition of woody debris increased dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; percent hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and less variable C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among soil solutions from different detrital treatments in the field, suggesting that microbial processing of DOM leachate in the field consumed easily degradable components, thus equalizing leachate chemistry among treatments. Total dissolved N leaching from plots with intact roots was very low (0.17 g m−2 year−1), slightly less than measured deposition to this very unpolluted forest (~s 0.2 g m−2 year−1). Total dissolved N losses showed significant increases in the two treatments without roots whereas concentrations of DOC decreased. In these plots, N losses were less than half of estimated plant uptake, suggesting that other mechanisms, such as increased microbial immobilization of N, accounted for retention of N in deep soils. In long-term laboratory incubations, soils from plots that had both above- and below-ground litter inputs excluded for 5 years showed a trend towards lower DOC loss rates, but not lower respiration rates. Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.

Keywords

Dissolved organic carbon Dissolved organic nitrogen DOC DON Hydrophilic Hydrophobic Lysimeter Nitrate Respiration Soil organic matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D. 1992Nitrogen cycling and nitrogen saturation in temperate forest ecosystemsTrends Ecol. Evol.7220223CrossRefGoogle Scholar
  2. Ameel, J.J., Axler, R.P., Owen, C.J. 1993Persulfate digestion for determination of total nitrogen and phosphorus in low-nutrient watersAm. Environ. Lab.10/93111Google Scholar
  3. Berg, B. 2000Litter decomposition and organic matter turnover in northern forest soilsForest Ecol. Manage.1331322Google Scholar
  4. Carreiro, M.M., Sinsabaugh, R.L., Repert, D.A., Parkhurst, D.F. 2000Microbial enzyme shifts explain litter decay responses to simulated nitrogen depositionEcology8123592365Google Scholar
  5. Christ, M., David, M.B. 1994Fractionation of dissolved organic carbon in soil water: effects of extraction and storage methodsComm. Soil Sci. Plant Anal.2533053319CrossRefGoogle Scholar
  6. Currie, W.S., Aber, J.D., McDowell, W.H., Boone, R.D., Magill, A.H. 1996Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forestsBiogeochemistry35471505CrossRefGoogle Scholar
  7. Dignac, M.-F., Knicker, H., Kögel-Knabner, I. 2002aEffect of N content and soil texture on the decomposition of organic matter in forest soils as revealed by solid-state CPMAS NMR spectroscopyOrg. Geochem.3317151726CrossRefGoogle Scholar
  8. Dignac, M.-F., Kögel-Knabner, I., Michel, K., Matzner, E., Knicker, H. 2002bChemistry of soil organic matter as related to C/N in Norway spruce forest (Picea abies (L.) Karst.) floors and mineral soilsJ. Plant Nutr. Soil Sci.165281289CrossRefGoogle Scholar
  9. Dise, N.B., Matzner, E., Gundersen, P. 1998Synthesis of nitrogen pools and fluxes from European forest ecosystemsWater Air Soil Poll.105143154CrossRefGoogle Scholar
  10. Dixon J. 2003. Applying GIS to soil geomorphic landscape mapping in the Lookout Creek Valley, western Cascades, Oregon. M.S. thesis, Oregon State University.Google Scholar
  11. Gundersen, P. 1995Nitrogen deposition and leaching in European forests- preliminary results from a data compilationWater Air Soil Poll.8511791184Google Scholar
  12. Hart, S.C. 1999Nitrogen transformations in fallen tree boles and mineral soil of an old-growth forestEcology8013851394Google Scholar
  13. Hart, S.C., Sollins, P. 1998Soil carbon and nitrogen pools and processes in an old-growth conifer forest 13 years after trenchingCan. J. Forest Res.281261Google Scholar
  14. Hattenschwiler, S., Vitousek, P.M. 2000The role of polyphenols in terrestrial ecosystem nutrient cyclingTrends Ecol. Evol.15238243Google Scholar
  15. Kaiser, K., Zech, W. 2000Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phasesEuro. J. Soil Sci.51403411Google Scholar
  16. Kalbitz K., Schwesig D., Schmerwitz J., Kaiser K., Haumaier L., Glaser B., Ellerbrock R. and Leinweber P. 2003. Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol. Biochem.: 1129–1142.Google Scholar
  17. Kalbitz, K., Zuber, T., Park, J.H., Matzner, E. 2004Environmental controls on concentrations and fluxes of dissolved organic matter in the forest floor and in soil solutionEcol. Studies172315338Google Scholar
  18. Kaushal, S.S., Lewis, W.M. 2003Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streamsEcosystems6483492CrossRefGoogle Scholar
  19. Kuperman, R.G. 1999Litter decomposition and nutrient dynamics in oak-hickory forests along a historic gradient of nitrogen and sulfur depositionSoil Biol. Biochem.31237244CrossRefGoogle Scholar
  20. Lajtha, K., Jarrell, W., Johnson, D.W., Sollins, P. 1999

    Collection of soil solution

    Robertson, P.Coleman, D.Bledsoe, C.Sollins, P. eds. Standard Soil Methods for Long-Term Ecological ResearchOxford University PressNew York115142
    Google Scholar
  21. Leenheer, J.A. 1981Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewatersEnviron. Sci. Technol.15578587Google Scholar
  22. Magill, A.H., Aber, J.D. 1998Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystemsPlant Soil203301311CrossRefGoogle Scholar
  23. McCracken, K.L., McDowell, W.H., Harter, R.D., Evans, C. 2002Dissolved Organic Carbon Retention in Soils: Comparison of Solution and Soil MeasurementsSoil Sci. Soc. Am. J.66563568CrossRefGoogle Scholar
  24. McDowell, W.H. 2003Dissolved organic matter in soils-future directions and unanswered questionsGeoderma113179186CrossRefGoogle Scholar
  25. McDowell, W.H., Likens, G.E. 1988Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valleyEcol. Monogr.58177195Google Scholar
  26. McDowell, W.H., Magill, A.H., Aitkenhead-Peterson, J.A., Aber, J.D., Merriam, J.L., Kaushal, S.S. 2004Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solutionForest Ecol. Manage.1962941Google Scholar
  27. Melillo, J.M., Aber, J.D., Muratore, J.F. 1982Nitrogen and lignin control of hardwood leaf litter decomposition dynamicsEcology63621626Google Scholar
  28. Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B., Nadelhoffer, K.J. 1989Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matterPlant Soil115189198CrossRefGoogle Scholar
  29. Michalzik, B., Matzner, E. 1999Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystemEuro. J. Soil Sci.50579590Google Scholar
  30. Nadelhoffer, K.J. 1990Microlysimeter for measuring nitrogen mineralization and microbial respiration in aerobic soil incubationsSoil Sci. Soc. Am. J.54411415CrossRefGoogle Scholar
  31. Neff, J.C., Hobbie, S.E., Vitousek, P.M. 2000Nutrient and mineralogical control on dissolved organic C, Nand P fluxes and stoichiometry in Hawaiian soilsBiogeochemistry51283302CrossRefGoogle Scholar
  32. Nielsen, G.A., Hole, F.D. 1963A study of the natural processes of incorporation of organic matter into soil in the University of Wisconsin ArboretumWisconsin Acad. Sci. Arts, Letts.52213227Google Scholar
  33. Palm, C.A., Sanchez, P.A. 1991Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contentsSoil Biol. Biochem.238388CrossRefGoogle Scholar
  34. Park, J.H., Kalbitz, K., Matzner, E. 2002Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floorSoil Biol. Biochem.34813822CrossRefGoogle Scholar
  35. Park, J.-H., Matzner, E. 2001Carbon control on nitrogen dynamics in the forest floor of an N-enriched deciduous forest ecosystemWater Air Soil Poll.130643648Google Scholar
  36. Park, J.-H., Matzner, E. 2003Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water fluxBiogeochemistry66265286CrossRefGoogle Scholar
  37. Qualls, R.G., Haines, B.L. 1991Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystemSoil Sci. Soc. Am. J.5511121123CrossRefGoogle Scholar
  38. Qualls, R.G., Haines, B.L. 1992Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream waterSoil Sci. Soc. Am. J.56578586Google Scholar
  39. Quideau, S.A., Chadwick, O.A., Benesi, A., Graham, R.C., Anderson, M.A. 2001A direct link between forest vegetation type and soil organic matter compositionGeoderma1044160CrossRefGoogle Scholar
  40. Saiya-Cork, K.R., Sinsabaugh, R.L., Zak, D.R. 2002The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soilSoil Biol. Biochem.3413091315CrossRefGoogle Scholar
  41. Schimel, J.P., Bennett, J. 2004Nitrogen mineralization: challenges of a changing paradigmEcology85591602Google Scholar
  42. Sinsabaugh, R.L., Carreiro, M.M., Repert, D.A. 2002Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass lossBiogeochemistry60124CrossRefGoogle Scholar
  43. Sjöberg, G., Knicker, H., Nilsson, S.I., Berggren, D. 2004Impact of long-term N fertilization on the structural composition of spruce litter and mor humusSoil Biol. Biochem.36609618Google Scholar
  44. Smithwick, E.A.H., Harmon, M.E., Remillard, S.M., Acker, S.A., Franklin, J.F. 2003Potential upper bounds of carbon stores in forests of the Pacific NorthwestEcol. Appl.121303Google Scholar
  45. Sollins P., Brown A.T. and Swartzman G. 1979. CONIFER: a Model of Carbon and Water Flow Through a Coniferous Forest (revised documentation). Coniferous Forest Biome Bulletin 15. University of Washington, Seattle, WA, USA.Google Scholar
  46. Sollins, P., Grier, C.C., McCorison, F.M., Cromack, K.,Jr., Fogel, R., Fredriksen, R.L. 1980The internal element cycles of an old-growth Douglas-fir ecosystem in western OregonEcol. Monogr.50261285Google Scholar
  47. Sollins, P., Cromack, K.,Jr., McCorison, F.M., Waring, R.H., Harr, R.D. 1981Changes in nitrogen cycling at an old-growth Douglas-fir site after disturbanceJ. Environ. Qual.103742CrossRefGoogle Scholar
  48. Sollins, P., McCorison, F.M. 1981Nitrogen and carbon soil solution chemistry of an old growth coniferous forest watershed before and after cuttingWater Resourc. Res.1714091418CrossRefGoogle Scholar
  49. Spears, J.D.H., Holub, S.M., Harmon, M.E., Lajtha, K. 2003The influence of decomposing logs on soil biology and nutrient cycling in an old-growth mixed coniferous forest in Oregon, USACan. J. Forest Res.3321932201Google Scholar
  50. Spears, J.D.H., Lajtha, K. 2004The imprint of coarse woody debris on soil chemistry in the western Oregon CascadesBiogeochemistry71163175CrossRefGoogle Scholar
  51. Sulzman, E.W., Brant, J., Bowden, R., Lajtha, K. 2005Soil CO2 fluxes as influenced by quantity and type of inputs: the DIRT experimentBiogeochemistry73327CrossRefGoogle Scholar
  52. Swanston, C.W., Caldwell, B.A., Homann, P.S., Ganio, L., Sollins, P. 2002Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soilsSoil Biol. Biochem.3411211130CrossRefGoogle Scholar
  53. Triska, F.J., Cromack, K.J. 1979

    The role of wood debris in forests and streams

    Waring, R.H. eds. Forests: Fresh Perspectives from Ecosystem AnalysisOregon State University PressCorvallis171190
    Google Scholar
  54. Vanderbilt, K.L., Lajtha, K., Swanson, F. 2003Biogeochemistry of unpolluted forested watersheds in the Oregon Cascades: temporal patterns of precipitation and stream nitrogen fluxesBiogeochemistry6287117CrossRefGoogle Scholar
  55. Wiegner, T.N., Seitzinger, S.P. 2001Photochemical and microbial degradation of external dissolved organic matter inputs to riversAquatic Microb. Ecol.242740CrossRefGoogle Scholar
  56. Yano, Y., McDowell, W.H., Aber, J.D. 2000Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen depositionSoil Biol. Biochem.3217431751CrossRefGoogle Scholar
  57. Yano, Y., Lajtha, K., Sollins, P., Caldwell, B.A. 2005Chemistry and Dynamics of Dissolved Organic Matter in a Temperate Coniferous Forest on Andic Soils: Effects of Litter QualityEcosystems8286300CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • K. Lajtha
    • 1
  • S. E. Crow
    • 1
  • Y. Yano
    • 2
    • 3
  • S. S. Kaushal
    • 4
  • E. Sulzman
    • 5
  • P. Sollins
    • 2
  • J. D. H. Spears
    • 1
  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  2. 2.Department of Forest ScienceOregon State UniversityCorvallisUSA
  3. 3.Ecosystems Center, MBLWoods HoleUSA
  4. 4.Appalachian Laboratory FrostburgUMCESUSA
  5. 5.Department Crop and Soil ScienceOregon State UniversityCorvallisUSA

Personalised recommendations