Biogeochemistry

, Volume 77, Issue 3, pp 283–304 | Cite as

Organic Biogeochemistry of Detrital Flocculent Material (Floc) in a Subtropical, Coastal Wetland

  • Renato R. Neto
  • Ralph N. Mead
  • J. William Louda
  • Rudolf Jaffé
Article

Abstract

Flocculent materials (floc), in aquatic systems usually consist of a non-consolidated layer of biogenic, detrital material relatively rich in organic matter which represents an important food-web component for invertebrates and fish. Thus, variations in its composition could impact food webs and change faunal structure. Transport, remineralization rates and deposition of floc may also be important factors in soil/sediment formation. In spite of its relevance and sensitivity to external factors, few chemical studies have been carried out on the biogeochemistry of floc material. In this study, we focused on the molecular characterization of the flocculent organic matter (OM), the assessment of its origin and its environmental fate at five stations along a freshwater to marine ecotone, namely the Taylor Slough, Everglades National Park (ENP), Florida. To tackle this issue, suspended, unconsolidated, detrital floc samples, soils/sediments and plants were analyzed for bulk properties, biomarkers and pigments. Both geochemical proxies and biomass-specific biomarkers were used to assess OM sources and transformations. Our results show that the detrital organic matter of the flocculent material is largely regulated by local vegetation inputs, ranging from periphyton, emergent and submerged plants and terrestrial plants such as mangroves, with molecular evidence of different degrees of diagenetic reworking, including fungal activity. Evidence is presented for both hydrodynamic transport of floc materials, and incorporation of floc OM into soils/sediments. However, some molecular parameters showed a decoupling between floc and underlying soil/sediment OM, suggesting that physical transport, incorporation and degradation/remineralization of OM in floc may be controlled by a combination of a variety of complex biogeochemical variables including hydrodynamic transport, hydroperiod characteristics, primary productivity, nutrient availability, and OM quality among others. Further investigations are needed to better understand the ecological role of floc in freshwater and coastal wetlands.

Keywords

Biomarkers Everglades Flocculent material Pigments Taxonomic composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, E.W., Louda, J.W. 2002

    The legacy of the Treibs’ samples

    Prashnowsky, A. eds. Alfred Treibs Memorial Volume WurzburgUniversity of WurzburgWurzburg3128
    Google Scholar
  2. Candau, R., Avalos, J., Cerdaolmedo, E. 1992Regulation of gibberellin biosynthesis in Gibberella fujikuroiPlant Physiol.10011841188Google Scholar
  3. Canuel, E.A., Martens, C.S. 1996Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment–water interfaceGeochim. Cosmochim. Acta6017931806CrossRefGoogle Scholar
  4. Davis, S.M., Gunderson, L.H., Park, W.A., Richardson, J.R., Mattson, J.E. 1994

    Landscape dimension, composition, and function in a changing Everglades ecosystem

    Davis, S.Ogden, J.C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL419444
    Google Scholar
  5. Davis, S., Ogden, J.C. 1994

    Toward ecosystem restoration

    Davis, S.Ogden, J.C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL769796
    Google Scholar
  6. Droppo, I.G. 2001Rethinking what constitutes suspended sedimentHydrol. Process.1515511564CrossRefGoogle Scholar
  7. Droppo, I.G., Leppard, G.G., Fannigan, D.T., Liss, S.N. 1997The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment propertiesWater Air Soil Pollut.994354CrossRefGoogle Scholar
  8. Ekweozor, C., Telnaes, N. 1990Oleanane parameter: verification by quantitative study of the biomarker occurrence in sediments of the Niger deltaOrg. Geochem.16401413CrossRefGoogle Scholar
  9. Fernández-Martín, R., Domenech, C., Cerda-Olmedo, E., Avalos, J. 2000ent-Kaurene and squalene synthesis in Fusarium fujikuroi cell-free extractsPhytochemistry54723728CrossRefGoogle Scholar
  10. Ficken, K.J., Li, B., Swain, D.L., Eglinton, G. 2000An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytesOrg. Geochem.31745749CrossRefGoogle Scholar
  11. Fraga, B., Hernandez, M.G., Rodriguez, M.D., Diaz, C.E., Gonzalez, P., Hanson, J.R. 1987Transformation of ent-kaur-15-enes by Gibberella fujikuroiPhytochemistry2619311934Google Scholar
  12. Gaiser, E.E., Scinto, L.J., Richards, J.H., Jayachandran, K., Childers, D.L., Trexler, J.C., Jones, R.D. 2004Phosphorus in periphyton mats provides the best metric for detecting low level P enrichment in an oligotrophic wetlandWater Res.38507516CrossRefGoogle Scholar
  13. Garcia-Pichel, F., Sherry, N.D., Castenholz, R.W. 1992Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis spPhotochem. Photobiol.561723Google Scholar
  14. Gearing, P.J., Gearing, J.N., Lytle, T.F., Lytle, J.S. 1976Hydrocarbons in 60 northeast Gulf of Mexico Shelf sediments: a preliminary studyGeochim. Cosmochim. Acta4010051017CrossRefGoogle Scholar
  15. Gleason, P., Stone, P. 1994

    Ageorigin, and landscape evolution of the Everglades Peatland

    Davis, S.Ogden, J.C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL149197
    Google Scholar
  16. Gleason, P.J., Spakman, W. 1974

    Calcareous periphyton and water chemistry in the Everglades

    Gleason, P.J. eds. Environments of South Florida: Present and PastMiami Geological Society Memoir number 2Coral Gable, FL, USA146181
    Google Scholar
  17. Gunderson, L.H. 1994

    Vegetation of the everglades: determinants of community composition

    Davis, S.M.Ogden, J.C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL323340
    Google Scholar
  18. Gunderson, L.H., Loftus, W.F. 1993

    The Everglades

    Martin, W.H.Boyce, S.C.Echtenacht, A.C. eds. Biotic Diversity of the Southeastern United StatesJohn WileyNew York, NY199255
    Google Scholar
  19. Hagerthey S.E., Jacoby M., Louda J.W. and Mongkronsri P. 2003. Development of a high performance liquid chromatography (HPLC) protocol for monitoring periphyton in the Florida Everglades. Proceedings of the Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem, Palm Harbor, Florida, April 2003.Google Scholar
  20. Hernandez, M.E., Mead, R., Peralba, M.C., Jaffé,  2001Origin and transport of n-alkane-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matterOrg. Geochem.322132CrossRefGoogle Scholar
  21. Holling, C.S., Gunderson, L.H., Walters, C.J. 1994

    The structure and dynamics of the Everglades system: guidelines for ecosystem restoration

    Davis, S.M.Ogden, J.C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL741756
    Google Scholar
  22. Jaffé, R., Boyer, J.N., Lu, X., Maie, N., Yang, C., Scully, N., Mock, S. 2004Sources characterization of dissolved organic matter in a mangrove-dominated estuary by fluorescence analysisMarine Chem.84195210Google Scholar
  23. Jaffé, R., Mead, R., Hernandez, M.E., Peralba, M.C., DiGuida, O.A. 2001Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based studyOrg. Geochem.32507526CrossRefGoogle Scholar
  24. Jeffrey, S.W.Mantoura, R.F.C.Wright, S.W. eds. 1997Phytoplankton Pigments in Oceanography: Guidelines to Modern MethodsUNESCOParis661Google Scholar
  25. Killops, S.D., Frewin, N.L. 1994Triterpenoid diagenesis and cuticular preservationOrg. Geochem.2111931209CrossRefGoogle Scholar
  26. Louda, J.W., Liu, L., Baker, E.W. 2002Senescence- and death-related alteration of chlorophylls and carotenoids in marine phytoplanktonOrg. Geochem.3316351653Google Scholar
  27. Louda, J.W., Loitz, J.W., Rudnick, D.T., Baker, E.W. 2000Early diagenetic alteration of chlorophyll-abacteriochlorophyll-a in a contemporaneous marl ecosystem: Florida BayOrg. Geochem.3115611580Google Scholar
  28. Louda, J.W., Li, J., Liu, L., Winfree, M.N., Baker, E.W. 1998Chlorophyll degradation during senescence and deathOrg. Geochem.2912331251CrossRefGoogle Scholar
  29. Mead, R.N., Xu, Y., Chong, J., Jaffé, R. 2005Sedimentary organic matter source assessment in a sub-tropical wetland and estuarine environment using the molecular distribution and carbon isotopic composition of n-alkanesOrg. Geochem.36363370CrossRefGoogle Scholar
  30. McCormick, P.V., O’Dell, M.B., Shuford, R.B.E., Backus, J.G., Kennedy, W.C. 2001Periphyton responses to experimental phosphorus enrichment in a subtropical wetlandAquat. Bot.71119139CrossRefGoogle Scholar
  31. McIvor, C. 1994

    Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: a review

    Davis, S.M.Ogden, J.C. eds. Everglades: The Ecosystem and its RestorationSt. Lucie PressDelray Beach, FL117146
    Google Scholar
  32. Millie, D.F., Paerl, H.W., Hurley, J.P. 1993Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applicationsCan. J. Fish. Aquat. Sci.5025132527Google Scholar
  33. Moore, J.C., Berlow, E.L., Coleman, D.C., Ruiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., Wall, D.H. 2004Detritus, trophic dynamics and biodiversityEcol. Lett.7584600CrossRefGoogle Scholar
  34. Newman, S., Kumpf, H., Laing, J.A., Kennedy, W.C. 2001Decomposition responses to phosphorus enrichment in an Everglades (USA) sloughBiogeochemistry54229250CrossRefGoogle Scholar
  35. Newell, S.Y. 2003Fungal content and activities in standing-decaying leaf blades of plants of the Georgia Coastal Ecosystems research areaAquat. Microb. Ecol.3295103Google Scholar
  36. Nikolcheva, L.G., Cockshutt, A.M., Barlocher, F. 2003Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approachesAppl. Environ. Microbiol.6925482554CrossRefGoogle Scholar
  37. Noble, R.A., Alexander, R., Kagi, R.I., Knox, J. 1985Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oilsGeochim. Cosmochim. Acta4921412147CrossRefGoogle Scholar
  38. Noe, G.B., Childers, D.L., Jones, R.D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: Why is the Everglades so unique?Ecosystems4603624CrossRefGoogle Scholar
  39. Noe, G.B., Childers, D.L., Edwards, A.L., Gaiser, E., Jayachandran, K., Lee, D., Meeder, J., Richards, J., Scinto, L.J., Trexler, J.C., Jones, R.D. 2002Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichmentBiogeochemistry59239267CrossRefGoogle Scholar
  40. Reddy, K.R., White, J.R., Wright, A., Chua, T. 1999

    Influence of phosphorus loading on microbial processes in the soil and water columns of wetlands

    Reddy, K.R.O’Connor, G.A.Schleske, C.L. eds. Phosphorus Biogeochemistry in Subtropical EcosystemsLewis PublishersBoca Raton249273
    Google Scholar
  41. Rowland, S.J., Robson, J.N. 1990The widespread occurrence of highly branched acyclic C20C25 and C30 hydrocarbons in recent sediments and biota – a reviewMar. Environ. Res.30191216CrossRefGoogle Scholar
  42. Skerratt, J.H., Nichols, P.D., McMeekin, T.A., Burton, H. 1995Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipidsMar. Chem.5193113CrossRefGoogle Scholar
  43. Ten Haven, H.L., Rullkotter, J. 1988The diagenetic fate of taraxer-14-ene and oleanane isomersGeochim. Cosmochim. Acta5225432548Google Scholar
  44. Thomas, B.R. 1970

    Moderm and fossil plant resins

    Harbourne, J. eds. Phytochemical PhylogenyAcademic PressLondon5979
    Google Scholar
  45. Vargas, M.A., Rodriguez, H., Moreno, J., Olivares, H., Del Campo, J.A., Rivas, J., Guerrero, M.G. 1998Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteriaJ. Phycol.34812817CrossRefGoogle Scholar
  46. Versteegh, G.J.M., Schefuß, E., Dupont, L., Marret, F., Sinninghe Damsté, J.S., Jansen, J.H.F. 2004Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystemsGeochim. Cosmochim. Acta68411422CrossRefGoogle Scholar
  47. Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., Garland, C.D. 1989Fatty-acid and lipid-composition of 10 species of microalgae used in maricultureJ. Exp. Mar. Biol. Ecol.128219240CrossRefGoogle Scholar
  48. Vymazal, J., Richardson, C.J. 1995Species composition, biomass, and nutrient content of periphyton in the Florida evergladesJ. Phycol.31343354CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Renato R. Neto
    • 1
    • 3
  • Ralph N. Mead
    • 1
  • J. William Louda
    • 2
  • Rudolf Jaffé
    • 1
  1. 1.Southeast Environmental Research Center, Department of Chemistry and Biochemistry, Environmental Geochemistry LaboratoryFlorida International UniversityMiamiUSA
  2. 2.Department of Chemistry and Biochemistry, Organic Geochemistry GroupFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Departamento de Ecologia e Recursos NaturaisUniversidade Federal de Espirito SantoVitoriaBrazil

Personalised recommendations