, Volume 78, Issue 3, pp 343–359 | Cite as

Tannin Dynamics of Propagules and Leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China

  • Y. M. LinEmail author
  • J. W. Liu
  • P. Xiang
  • P. Lin
  • G. F. Ye
  • L. S. L. da Sternberg


Changes in the total phenolics, condensed tannins (CT), protein-precipitable phenolics content and protein precipitation capacity were determined on a series of mangrove leaves from two true viviparous mangrove species (Kandelia candel and Bruguiera gymnorrhiza) at various stages of development and decomposition in the Jiulong River Estuary, Fujian, China. Similar measurements were also done for the propagules at different developmental stages. The results showed that the total phenolics, extractable condensed tannins, total condensed tannins, protein-precipitable phenolics content and protein precipitation capacity in young leaves were higher than those in mature and senescent leaves. Tannin dynamics during leaf decomposition varied with species, and the rapid loss of phenolics observed during decomposition can be ascribed to leaching and degradation. Protein-bound CT and fibre-bound CT tended to increase with leaf decomposition, with CT binding more strongly to protein than to fibre. Protein-bound CT was higher than fibre-bound CT with the exception of mature leaves. Total phenolics, extractable CT and protein-precipitable phenolics contents in flower tissues were relatively lower than those in hypocotyls at different developmental stages. Protein precipitation capacity fluctuated with the development of propagules. Increases in nitrogen in decaying litter, and declines in contents of total phenolics and total condensed tannins of detritus support the general conclusion that decomposing mangrove detritus can be a more palatable heterotrophic substrate than living leaves.


Bruguiera gymnorrhiza Kandelia candel Leaves Propagules Protein precipitation capacity Tannins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benner, R., Fogel, M.L., Sprague, E.K. 1991Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sedimentsLimnol Oceanogr.3613581374CrossRefGoogle Scholar
  2. Bruyne, T.D., Pieters, L., Deelstra, H., Vlietinck, A. 1999Condensed vegetable tannins: biodiversity in structure and biological activitiesBiochem. Syst. Ecol.27445459CrossRefGoogle Scholar
  3. Chang, C.W., Hsu, F.L., Lin, J.Y. 1994Inhibitory effects polyphenolic transcripase activityJ. Biomed. Sci.1163166CrossRefGoogle Scholar
  4. Chung, K.T., Stevens, S.E.,Jr., Lin, W.F., Wei, C.I. 1993Growth inhibition of selected food-borne bacterial by tannin acidpropyl gallate and related compounds leuAppl. Microbiol.12932CrossRefGoogle Scholar
  5. Chung, K.T., Zhao, G., Stevens, E.S.,Jr., Simco, B.A., Wei, C.I. 1995aGrowth inhibition of selected aquatic bacterial by tannic acid and related compoundsJ. Aquat. Anim. Health74649CrossRefGoogle Scholar
  6. Chung, K.T., Zhao, G., Stevens, E.S.,Jr. 1995bInhibitory effects of tannic acid and its derivatives on growth of the Cyanobacteria nostoc sp. MAC and Agmenellum quadruplicatum PR-6J. Aquat. Anim. Health7341344CrossRefGoogle Scholar
  7. Chung, K.T., Wei, C.I., Johnson, M.G. 1998Are tannins a double-edged sword in biology and health?Trends Food Sci. Tech.9168175CrossRefGoogle Scholar
  8. Graham, H.D. 1992Stabilization of the prussian blue color in the determination of polyphenolsJ. Agric. Food Chem.40801805CrossRefGoogle Scholar
  9. Hagerman, A.E. 1987Radial diffusion method for determining tannin in plant extractsJ. Chem. Ecol.13437449CrossRefGoogle Scholar
  10. Hagerman A.E. 2002. Tannin Chemistry.
  11. Hagerman, A.E., Butler, L.G. 1981Specificity of the proanthocyanidin-protein interactionJ. Biol. Chem.25644944497Google Scholar
  12. Hagerman, A.E., Klucher, K. 1986Tannin–protein interactionsHarborne, J.Middleton, E. eds. Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity RelationshipsAlan R. LissNew York6776Google Scholar
  13. Hagerman, A.E., Riedl, K.M., Jones, G.A., Sovik, K.N., Ritchard, N.T., Hartzfeld, P.W., Riechel, T.L. 1998High molecular weight plant polyphenolics (tannins) as biological antioxidantsJ. Agric. Food Chem.4618871892CrossRefGoogle Scholar
  14. Hemingway, R.W., Karchesy, J.J. 1989Chemistry and Significance of Condensed TanninsPlenumNew YorkGoogle Scholar
  15. Hemingway, R.W., Laks, P.E. 1992Plant Polyphenols 1: Synthesis, Properties, SignificancePlenumNew YorkGoogle Scholar
  16. Hernes, P.J., Hedges, J.I. 2000Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extractsAnal. Chem.7251155124CrossRefGoogle Scholar
  17. Hernes, P.J., Benner, R., Cowie, G.L., Goni, M.A., Bergamaschi, B.A., Hedges, J.I. 2001Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approachGeochim. Cosmochim. Acta6531093122CrossRefGoogle Scholar
  18. Howard, P.J.A., Howard, D.M. 1993Ammonification of complexes prepared from gelatin and aqueous extracts of leaves and freshly-fallen litter of trees on different soil typesSoil Biol. Biochem.2512491256CrossRefGoogle Scholar
  19. Kandil, F.E., Grace, M.H., Seigler, D.S., Cheeseman, J.M. 2004Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescenceTrees18518528CrossRefGoogle Scholar
  20. Kraus, T.E.C., Yu, Z., Preston, C.M., Dahlgren, R.A., Zasoski, R.J. 2003Linking chemical reactivity and protein precipitation to structural characteristics of foliar tanninsJ. Chem. Ecol.29703730CrossRefGoogle Scholar
  21. Lee, C., Howarth, R.W., Howes, B.I. 1980Steros in decomposing Spartina alterniflorathe use of ergosterol in estimating the contribution of fungi to detrital nitrogenLimnol. Oceanogr.25290303CrossRefGoogle Scholar
  22. Lin, P. 1999Mangrove Ecosystem in ChinaScience PressBeijing, New YorkGoogle Scholar
  23. Lin, P., Chen, R.H. 1986Studies on the mangrove ecosystem of the Jiulongjian River Estuary in China. Accumulation and biological cycle of calcium and magnesium in Kandelia candel communityActa Oceanol. Sin.5447455Google Scholar
  24. Makkar, H.P.S., Dawra, R.K., Singh, B. 1987Protein precipitation assay for quantitation of tannins: determination of protein in tannin–protein complexAnal. Biochem.166435439CrossRefGoogle Scholar
  25. Makkar, H.P.S., Dawra, R.K., Singh, B. 1988Changes in tannin contentpolymerization and protein precipitation capacity in Oak (Quercus incana) leaves with maturityJ. Sci. Food Agric.44301307Google Scholar
  26. Martin, J.S., Martin, M.M. 1983Tannin assays in ecological studies. Precipitation of ribulose-1,5-bisphosphate carbonxylase/oxygenase by tannic acidquebrachoand oak foliage extractsJ. Chem. Ecol.9285294CrossRefGoogle Scholar
  27. Melillo, J.M., Naiman, R.J., Aber, J.D., Linkins, A.E. 1984Factors controlling mass loss and nitrogen dynamics of plant litter decaying in Northern StreamsBull. Mar. Sci.35341356Google Scholar
  28. Naczk, M., Oickle, D., Pink, D., Shahidi, F. 1996Protein precipitating capacity of crude canola tannins: effect of pH, tannin and protein concentrationsJ. Agric. Food. Chem.4421442148CrossRefGoogle Scholar
  29. Nagamitsu, M., Anke, B., Heike, K., Ingrid, K. 2003Changes in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leavesSoil Biol. Biochem.35577589CrossRefGoogle Scholar
  30. Northup, R.R., Dahlgren, R.A., McColl, J.G. 1998Polyphenols as regulators of plant-litter-soil interactions in northern California’s pygmy forest: a positive feedback?Biogeochemistry42189220CrossRefGoogle Scholar
  31. Northup, R.R., Yu, Z., Dahlgren, R.A., Vogt, K.A. 1995Polyphenol control of nitrogen release from pine litterNature377227229CrossRefGoogle Scholar
  32. Rawat, M.S.M., Pant, G., Prasad, D., Joshi, R.K., Pande, C.B. 1998Plant growth inhibitors (proanthocyanidins) from Prunus armeniaca Biochem. Sys. Ecol.261323CrossRefGoogle Scholar
  33. Rice, D.L. 1982The detritus nitrogen problem: new observations and perspective from organic geochemistryMar. Ecol. Prog. Ser.9153162Google Scholar
  34. Rossiter, M.C., Schultz, J.C., Baldwin, I.T. 1988Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproductionEcology69267277CrossRefGoogle Scholar
  35. Scalbert, A. 1992Antimicrobial properties of tanninPhytochemistry3038753883CrossRefGoogle Scholar
  36. Schofield, J.A., Hagerman, A.E., Harold, A. 1998Loss of tannins and other phenolics from willow leaf litterJ. Chem. Ecol.2414091421CrossRefGoogle Scholar
  37. Terrill, T.H., Rowan, A.M., Douglas, G.B., Barry, T.N. 1992Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grainsJ. Sci. Food Agric.58321329Google Scholar
  38. Tomlinson, P.B. 1986The Botany of MangrovesCambridge University PressCambridgeGoogle Scholar
  39. Woitchik, A.F., Ohowa, B., Kazungu, J.M., Rao, R.G., Goeyens, L., Dehairs, F. 1997Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): relative importance of biological nitrogen fixationBiogeochemistry391535CrossRefGoogle Scholar
  40. Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A. 1972Laboratory Manual for Physiological Studies of Rice2The International Rice Research InstitutePhiliphinespp. 7–9, 36–38.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Y. M. Lin
    • 1
    • 3
    Email author
  • J. W. Liu
    • 1
  • P. Xiang
    • 1
  • P. Lin
    • 1
  • G. F. Ye
    • 2
  • L. S. L. da Sternberg
    • 3
  1. 1.Department of Biology, School of Life SciencesXiamen UniversityXiamenChina
  2. 2.Fujian Academy of ForestryFuzhouChina
  3. 3.Department of BiologyUniversity of MiamiCoral GablesUSA

Personalised recommendations