Biogeochemistry

, Volume 78, Issue 3, pp 285–314 | Cite as

Quantitative and Qualitative Aspects of Dissolved Organic Carbon Leached from Senescent Plants in an Oligotrophic Wetland

  • Nagamitsu Maie
  • Rudolf Jaffé
  • Toshikazu Miyoshi
  • Daniel L. Childers
Article

Abstract

We conducted a series of experiments whereby dissolved organic matter (DOM) was leached from various wetland and estuarine plants, namely sawgrass (Cladium  jamaicense), spikerush (Eleocharis  cellulosa), red mangrove (Rhizophora  mangle), cattail (Typha  domingensis), periphyton (dry and wet mat), and a seagrass (turtle grass; Thalassia  testudinum). All are abundant in the Florida Coastal Everglades (FCE) except for cattail, but this species has a potential to proliferate in this environment. Senescent plant samples were immersed into ultrapure water with and without addition of 0.1% NaN3 (w/ and w/o NaN3, respectively) for 36 days. We replaced the water every 3 days. The amount of dissolved organic carbon (DOC), sugars, and phenols in the leachates were analyzed. The contribution of plant leachates to the ultrafiltered high molecular weight fraction of DOM (>1 kDa; UDOM) in natural waters in the FCE was also investigated. UDOM in plant leachates was obtained by tangential flow ultrafiltration and its carbon and phenolic compound compositions were analyzed using solid state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy and thermochemolysis in the presence of tetramethylammonium hydroxide (TMAH thermochemolysis), respectively. The maximum yield of DOC leached from plants over the 36-day incubations ranged from 13.0 to 55.2 g C kg−1 dry weight. This amount was lower in w/o NaN3 treatments (more DOC was consumed by microbes than produced) except for periphyton. During the first 2 weeks of the 5 week incubation period, 60–85% of the total amount of DOC was leached, and exponential decay models fit the leaching rates except for periphyton w/o NaN3. Leached DOC (w/ NaN3) contained different concentrations of sugars and phenols depending on the plant types (1.09–7.22 and 0.38–12.4 g C kg−1 dry weight, respectively), and those biomolecules comprised 8–34% and 4–28% of the total DOC, respectively. This result shows that polyphenols that readily leach from senescent plants can be an important source of chromophoric DOM (CDOM) in wetland environments. The O-alkyl C was found to be the major C form (55±9%) of UDOM in plant leachates as determined by 13C CPMAS NMR. The relative abundance of alkyl C and carbonyl C was consistently lower in plant-leached UDOM than that in natural water UDOM in the FCE, which suggests that these constituents increase in relative abundance during diagenetic processing. TMAH thermochemolysis analysis revealed that the phenolic composition was different among the UDOM leached from different plants, and was expected to serve as a source indicator of UDOM in natural water. Polyphenols are, however, very reactive and photosensitive in aquatic environments, and thus may loose their plant-specific molecular characteristics shortly. Our study suggests that variations in vegetative cover across a wetland landscape will affect the quantity and quality of DOM leached into the water, and such differences in DOM characteristics may affect other biogeochemical processes.

Keywords

13C CPMAS NMR DOC composition Everglades Leaching TMAH thermochemolysis Vegetation Wetland ecosystems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostini, S., Desjobert, J.-M., Pergent, G. 1998Distribution of phenolic compounds in the seagrass Posidonia OceanicaPhytochemistry48611617CrossRefGoogle Scholar
  2. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A., Clarke, P. 1997Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopyAust. J. Soil Res.3510611083CrossRefGoogle Scholar
  3. Benner, R., Peele, E.R., Hodson, R.E. 1986Microbial utilization of dissolved organic matter from leaves of the red mangroveRhizophora manglein the fresh creek estuary, BahamasEstuar. Coast. Shelf Sci.23607619CrossRefGoogle Scholar
  4. Benner, R., Weliky, K., Hedges, J.I. 1990aEarly diagenesis of mangrove leaves in a tropical estuary: molecular-level analyses of neutral sugars and lignin-derived phenolsGeochim. Cosmochim. Acta5419912001CrossRefGoogle Scholar
  5. Benner, R., Hatcher, P.G., Hedges, J.I. 1990bEarly diagenesis of mangrove leaves in a tropical estuary: bulk chemical characterization using solid-state 13C NMR and elemental analysesGeochim. Cosmochim. Acta5420032013CrossRefGoogle Scholar
  6. Bertilsson, S., Jones, J.B.,Jr. 2003

    Supply of dissolved organic matter to aquatic ecosystems: Autochthonous sources

    Findlay, S.E.G.Sinsabaugh, R.L. eds. Aquatic Ecosystems: Interactivity of Dissolved Organic MatterAcademic PressAmsterdam324
    Google Scholar
  7. Blum, L.K., Mills, A.L. 1991Microbial growth and activity during the initial stages of seagrass decompositionMar. Ecol. Prog. Sr.707382Google Scholar
  8. Challinor, J.M. 1995Characterisation of wood by pyrolysis derivatisation-gas chromatography/mass spectrometryJ. Anal. Appl. Pyrolysis3593107CrossRefGoogle Scholar
  9. Chang, E.J., Lee, W.J., Cho, S.H., Choi, S.W. 2003Proliferative effects of flavan-3-ols and propelargonidins from Rhizomes of Drynaria fortunei on MCF-7 and Osteoblastic cellsArch. Pharm. Res.26620630CrossRefGoogle Scholar
  10. Childers, D.L., Doren, R.F., Jones, R., Noe, G.B., Rugge, M., Scinto, L.J. 2003Decadal change in vegetation and soil phosphorus patterns across the Everglades landscapeJ. Environ. Qual.32344362CrossRefGoogle Scholar
  11. Childers D.L., Rubio G., Iwaniec D., Rondeau D., Verdon E. and Madden C.J. 2005. Macrophyte responses to variation in hydrologic drivers and salinity in southern Everglades marshes. Hydrobiologia (in press).Google Scholar
  12. Childers D.L., Boyer J.N., Davis S.E., Madden C.J., Rudnick D.T. and Sklar F.H. 2005. Nutrient concentration patterns in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnol. Oceanogr. (in press).Google Scholar
  13. Clifford, D.J., Carson, D.M., McKinney, D.E., Bortiatynski, J.M., Hatcher, P.G. 1995A new rapid technique for the characterization of lignin in vascular plants: thermochemolysis with tetramethylammonium hydroxide (TMAH)Org. Geochem.23169175CrossRefGoogle Scholar
  14. Czochanska, Z., Foo, L.Y., Newman, R.H., Porter, L.J. 1980Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weightJ.C.S. Perkin I1022782286CrossRefGoogle Scholar
  15. Davis, S.M. 1991Growthdecomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida EvergladesAquat. Bot.40203224CrossRefGoogle Scholar
  16. Davis, S.M. 1994

    Phosphorus inputs and vegetation sensitivity in the Everglades

    Davis, S.M.Ogden, J.C. eds. Everglades: The Ecosystem and Its RestorationSt. LucieDelray Beach, Florida357378
    Google Scholar
  17. Davis, S.E.,III, Corronado-Molina, C., Childers, D.L., Day, J.W.,Jr. 2003Temporally dependent C, Nand P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern EvergladesAquat. Bot.75199215CrossRefGoogle Scholar
  18. Del Rio, J.C., McKinney, D.E., Knicker, H., Nanny, M.A., Minard, R.D., Hatcher, P.G. 1998Structural characterization of bio- and geo-macromolecules by off-line thermochemolysis with tetramethylammonium hydroxideJ. Chromatogr. A823433448CrossRefGoogle Scholar
  19. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. 1956Colorimetric method for determination of sugar and related substancesAnal. Chem.28350356CrossRefGoogle Scholar
  20. Ellis, C.J., Foo, L.Y., Porter, L.J. 1983Enantiomerism: a characteristic of the proanthocyanidins chemistry of the monocotyledonaePhytochemistry22483487CrossRefGoogle Scholar
  21. Engelhaupt, E., Bianchi, T.S. 2001Source and composition of high-molecular-weight dissolved organic carbon in a southern Louisiana tidal stream (Bayou Trepagnier)Limnol. Oceanogr.46917926CrossRefGoogle Scholar
  22. Filley, T.R., Minard, R.D., Hatcher, P.G. 1999Tetramethylammonium hydroxide (TMAH) thermochemolysis: proposed mechanisms based upon the application of 13C-labeled TMAH to a synthetic model lignin dimmerOrg. Geochem.30607621CrossRefGoogle Scholar
  23. Findlay, S.E.G.Sinsabaugh, R.L. eds. 2003Aquatic Ecosystems: Interactivity of Dissolved Organic MatterAcademicSan Diego, California, USA512Google Scholar
  24. Fourqurean, J.W., Schrlau, J.E. 2003Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay, USAChem. Ecol.19373390CrossRefGoogle Scholar
  25. Garnier, N., Richardin, P., Cheynier, V., Regert, M. 2003Characterization of thermally assisted hydrolysis and methylation products of polyphenols from modern and archaeological vine derivatives using gas chromatography–mass spectrometryAnal. Chim. Acta493137157CrossRefGoogle Scholar
  26. Gottlieb, A., Richards, J., Gaiser, E. 2005Effects of desiccation duration on the community structure and nutrient retention of short and long-hydroperiod Everglades periphyton matsAquat. Bot.8299112CrossRefGoogle Scholar
  27. Grime, J.P. 1977Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theoryAm. Nat.11111691194CrossRefGoogle Scholar
  28. Hatcher, P.G., Nanny, M.A., Minard, R.D., Dible, S.D., Carson, D.M. 1995Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood; the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH)Org. Geochem.23881888CrossRefGoogle Scholar
  29. Hernes, P.J., Benner, R., Cowie, G.L., Goñi, M.A., Bergamaschi, B.A., Hedges, J.I. 2001Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approachGeochim. Cosmochim. Acta.6531093122CrossRefGoogle Scholar
  30. Knicker, H., Lüdemann, H.-D. 1995N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradationOrg. Geochem.23329341CrossRefGoogle Scholar
  31. Kögel-Knabner, I. 199713C and 15N NMR spectroscopy as a tool in soil organic matter studiesGeoderma80243270CrossRefGoogle Scholar
  32. Liu, D., Wong, P.T.S., Dutka, B.J. 1973Determination of carbohydrates in lake sediment by a modified phenol–sulfuric acid methodWater Res.7741746CrossRefGoogle Scholar
  33. Lu, X.Q., Maie, N., Hanna, J.V., Childers, D.L., Jaffé, R. 2003Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida EvergladesWater Res.3725992606CrossRefGoogle Scholar
  34. Maie, N., Behrens, A., Knicker, H., Kögel-Knabner, I. 2003Changes in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leavesSoil Biol. Biochem.35577589CrossRefGoogle Scholar
  35. Maie, N., Yang, C.-Y., Miyoshi, T., Parish, K., Jaffé, R. 2005Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystemLimnol. Oceanogr.502335CrossRefGoogle Scholar
  36. Mannino, A., Harvey, H.R. 2000Terrigenous dissolved organic matter along an estuarine gradient and its flux to the coastal oceanOrg. Geochem.3116111625CrossRefGoogle Scholar
  37. Martin, F., Rio, J.C., González-Vila, F.J., Verdejo, T. 1995Thermally assisted hydrolysis and alkylation of lignins in the presence of tetra-alkylammonium hydroxidesJ. Anal. Appl. Pyrolysis.35113CrossRefGoogle Scholar
  38. McKinney, D.E., Carson, D.M., Clifford, D.J., Minard, R.D., Hatcher, P.G. 1995Off-line thermochemolysis versus flash pyrolysis for the in situ methylation of lignin; is pyrolysis necessary?J. Anal. Appl. Pyrol.344146CrossRefGoogle Scholar
  39. McKnight, D.M., Hood, E., Klapper, L. 2003

    Trace organic moieties of dissolved organic material in natural waters

    Findlay, S.E.G.Sinsabaugh, R.L. eds. Aquatic Ecosystems: Interactivity of Dissolved Organic MatterAcademic PressAmsterdam7196
    Google Scholar
  40. Mitsch, W.J., Gosselink, J.G. 2000WetlandsJohn Wiley & SonsNew York920Google Scholar
  41. Noe, G.B., Childers, D.L., Jones, R.D. 2001Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique?Ecosystems4603624CrossRefGoogle Scholar
  42. Northup, R.R., Dahlgren, R.A., McColl, J.G. 1998Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: a positive feedback?Biogeochemistry42189220CrossRefGoogle Scholar
  43. Obernosterer, I., Benner, R. 2004Competition between biological and photochemical processes in the mineralization of dissolved organic carbonLimnol. Oceanogr.49117124CrossRefGoogle Scholar
  44. Opsahl, S., Benner, R. 1993Decomposition of senescent blades of the seagrass Halodule wrightii in a subtropical lagoonMar. Ecol. Prog. Ser.94191205Google Scholar
  45. Orem, W.H., Hatcher, P.G. 1987Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environmentsOrg. Geochem.117382CrossRefGoogle Scholar
  46. Preston C.M. 1999. Condensed tannins of Salal (Gaultheria Shallon Pursh): A contributing factor to seedling “growth check” on northern Vancouver Island?. In: Gross G.G., Hemingway R.W. and Yoshida T. (eds), Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. Kluwer, pp. 825–841.Google Scholar
  47. Qualls, R.G., Richardson, C.J. 2000Phosphorous enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosmsSoil Sci. Soc. Am. J.64799808CrossRefGoogle Scholar
  48. Qualls, R.G., Richardson, C.J. 2003Factors controlling concentration, exportand decomposition of dissolved organic nutrients in the Everglades of FloridaBiogeochemistry62197229CrossRefGoogle Scholar
  49. Richardson, C.J., Ferrell, G.M., Vaithiyanathan, P. 1999Nutrient effects on stand structureresorption efficiency, and secondary compounds in Everglades sawgrassEcology8021822192CrossRefGoogle Scholar
  50. Rublee, P.A., Roman, M.R. 1982Decomposition of turtlegrass (Thalassia testudinum Konig) in flowing sea-water tanks and litterbags: compositional changes and comparison with natural particulate matterJ. Exp. Mar. Biol. Ecol.584758CrossRefGoogle Scholar
  51. Rudnick, D., Chen, Z., Childers, D., Boyer, J., Fontaine, T. 1999Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershedEstuaries22398416CrossRefGoogle Scholar
  52. Schimel, J.P., Cates, R.G., Ruess, R. 1998The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan tigaBiogeochemistry42221234CrossRefGoogle Scholar
  53. Scully, N.M., Maie, N., Dailey, S.K., Boyer, J.N., Jones, R.D., Jaffé, R. 2004Photochemical and microbial transformation of plant derived dissolved organic matter in the Florida EvergladesLimnol. Oceanogr.4916671678CrossRefGoogle Scholar
  54. Sutula, M., Perez, B., Reyes, E., Childers, D., Davis, S., Day, J., Rudnick, D., Sklar, F. 2003Factors affecting spatial and temporal variability in material exchange between the Southeastern Everglades wetlands and Florida Bay (USA)Estuarine Coast. Shelf Sci.56125CrossRefGoogle Scholar
  55. Vane, C.H., Abbott, G.D., Head, I.M. 2001The effect of fungal decay (Agaricus bisporus) on wheat straw lignin using pyrolysis-GC–MS in the presence of tetramethylammonium hydroxide (TMAH)J. Anal. Appl. Pyrol.606978CrossRefGoogle Scholar
  56. Waterman, P.G., Mole, S. 1994Analysis of Phenolic Plant MetabolitesBlackwell ScientificOxford, London238Google Scholar
  57. Wilson, J.O., Buchsbaum, R., Valiela, I., Swain, T. 1986Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alternifloraMar. Ecol. Prog. Ser.29177187Google Scholar
  58. Ziegler, S., Benner, R. 1999Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoonMar. Ecol. Prog. Ser.180149160Google Scholar
  59. Ziegler, S., Benner, R. 2000Effects of solar radiation on dissolved organic matter cycling in a subtropical seagrass meadowLimnol. Oceanogr.45257266CrossRefGoogle Scholar
  60. Zieman, J.C., Fourqurean, J.W., Iverson, R.L. 1989Distribution, abundance and productivity of seagrasses and macroalgae in Florida BayBull. Mar. Sci.44292311Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Nagamitsu Maie
    • 1
  • Rudolf Jaffé
    • 1
  • Toshikazu Miyoshi
    • 2
  • Daniel L. Childers
    • 3
  1. 1.Environmental Geochemistry Laboratory, Southeast Environmental Research Center & Department of Chemistry & BiochemistryFlorida International UniversityMiamiUSA
  2. 2.Research Center of Macromolecular Technology, National Institute of Advanced, Industrial Science and TechnologyKohtoh-ku, TokyoJapan
  3. 3.Southeast Environmental Research Center & Department of Biological SciencesFlorida International UniversityMiamiUSA

Personalised recommendations