, Volume 78, Issue 3, pp 247–265 | Cite as

Soil Respiration in the Cold Desert Environment of the Colorado Plateau (USA): Abiotic Regulators and Thresholds

  • Daniel P. FernandezEmail author
  • Jason C. Neff
  • Jayne Belnap
  • Richard L. Reynolds


Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16 °C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments.


Cold desert Regression tree Soil carbon Soil respiration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A., Scheaffer,  2004Water pulses and biogeochemical cycles in arid and semiarid ecosystemsOecologia141221245CrossRefGoogle Scholar
  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.G. 1985Classification and Regression TreesWadsworth International GroupBelmont, CA, USAGoogle Scholar
  3. Carlyle, J.C., Than, U. 1988Abiotic controls of soil respiration beneath an eighteen-year-old Pinus Radiata stand in south-eastern AustraliaJ. Ecol.76654662Google Scholar
  4. Casals, P., Romanya, J., Jordi, C., Bottner, P., Coûteaux, M.M., Vallejo, V.R. 2000CO2 efflux from a semi-xeric forest soil. I. Seasonality and effects of stoninessBiogeochemistry48261281CrossRefGoogle Scholar
  5. CLIM-MET data obtained from Earth Surface Dynamics ProgramU.S. Geological Survey.
  6. Conant, R.T., Klopatek, J.M., Malin, R.C., Klopatek, C.C. 1998Carbon pools and fluxes along an environmental gradient in northern ArizonaBiogeochemistry434361CrossRefGoogle Scholar
  7. De’ Ath, G., Fabricus, K.E. 2000Classification and regression trees: a powerful yet simple technique for ecological data analysisEcology8131783192CrossRefGoogle Scholar
  8. Dodd, M.B., Lauenroth, W.K. 1997The influence of soil texture on the soil water dynamics and vegetation structure of a short grass steppe ecosystemPlant Ecol.1331328CrossRefGoogle Scholar
  9. Epstien, H.E., Burke, I.C., Lauenroth, W.K. 1997Effects of temperature and soil texture on ANPP in the US Great PlainsEcology7826282631CrossRefGoogle Scholar
  10. Fang, C., Moncrieff, J.B. 2001The dependence of soil CO2 efflux on temperatureSoil Biol. Biochem.33155165CrossRefGoogle Scholar
  11. Jenny, H. 1980The Soil Resource: Origin and BehaviorSpringer-VerlagNew York, NY, USAGoogle Scholar
  12. Kittel T.G.F., Rosenbloom N.A., Painter T.H., Schimel D.S. and VEMAP participants. 1995. The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to climate change. J. Biogeog. 22: 857–862.Google Scholar
  13. Lane, D.R., Coffin, D.P., Lauenroth, W.K. 2000Changes in grassland canopy structure across a precipitation gradientJ. Veg. Sci.11359368CrossRefGoogle Scholar
  14. Lloyd, J., Taylor, J.A. 1994On the temperature dependence of soil respirationFunct. Ecol.8315323Google Scholar
  15. O’Connel, A.M. 1990Microbial decomposition (respiration) of litter in eucalyptus forests of South-Western Australia: an empirical model based on laboratory incubationsSoil Biol. Biochem.22153160CrossRefGoogle Scholar
  16. Neff, J.C., Reynolds, R.L., Belnap, J., Lamothe, P. 2005Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast UtahEcol. Appl.158795Google Scholar
  17. Noy-Meir, I. 1973Desert ecosystems: environment and producersAnn. Rev. Ecolog. Syst.42551CrossRefGoogle Scholar
  18. Parker, L.W., Miller, J., Steinberger, Y., Whitford, W.G. 1983Soil respiration in a Chihuahuan desert rangelandSoil Biol. Biochem.15303309CrossRefGoogle Scholar
  19. Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. 1987Analysis of Factors controlling soil organic matter levels in the great plains grasslandsSoil Sci. Soc. Am. J.5111731179CrossRefGoogle Scholar
  20. Paul, E.A., Clark, F.E. 1989Soil Microbiology and BiochemistryAcademic Press IncSan Diego, CA, USAGoogle Scholar
  21. Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.P., Aber, J.D. 1994Response of trace gas fluxes and N availability to experimentally elevated soil temperaturesEcol. Appl.4617625Google Scholar
  22. Raich, J.W., Schlsinger, W.H. 1992The carbon dioxide flux in soil respiration and its relationship to vegetation and climateTellus44B8199Google Scholar
  23. Raich, J.W., Rastetter, E.B., Melillo, J.M., Kicklighter, D.W., Steudler, P.A., Peterson, A.L., Grace, B., Moore, ,III, Vörösmarty, C.J. 1991Potential net primary production in South America: application of a global modelEcol. Appl.1399429Google Scholar
  24. Rastetter, E.B., Ryan, M.G., Shaver, G.R., Melillo, J.M., Nadelhoffer, K.J., Hobbie, J.E., Aber, J.D. 1991A general biogeochemical model describing the responses of C and N cycles in terrestrial ecosystems to changes in CO2climateand N depositionTree Physiol.9101126Google Scholar
  25. Sala, O.E., Parton, W.J., Joyce, L.A., Lauenroth, W.K. 1988Primary production of the central grassland region of the United StatesEcology694045CrossRefGoogle Scholar
  26. Schimel, D., Stillwell, M.A., Woodmansee, R.G. 1985Biogeochemistry of C, Nand P, in a soil catena of the shortgrass steppeEcology66276282CrossRefGoogle Scholar
  27. Schimel, D.S., Brasswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., Townsend, A.R. 1994Climatic, edaphic, and biotic controls over storage and turnover of carbon in soilsGlob. Biogeochem. Cycles8279273CrossRefGoogle Scholar
  28. Schimel, D.S. 1995Terrestrial ecosystems and the carbon cycleGlobal Change Biol.17791CrossRefGoogle Scholar
  29. Schwinning, S., Starr, B.I., Ehleringer, J.R. 2003Dominant cold desert plants do not partition warm season precipitation by event sizeOecologia136252260CrossRefGoogle Scholar
  30. U.S. Department of Agriculture Soil Conservation Service1991Soil survey of Canyonlands Area Utah: Parts of Grand and San Juan CountiesUnited States Department of AgricultureNatural Resource Conservation ServiceSalt Lake City, Utah, USAGoogle Scholar
  31. Kleve, K., Oechel, W.C., Hom, J.L. 1990Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior AlsakaCan. J. For. Res.2015301535Google Scholar
  32. West, N.E., Moore, R.T., Valentine, K.A., Law, L.A., Ogden, P.R., Pinkney, F.C., Tueller, P.T., Robertson, J.H., Beetle, A.A. 1972Galleta: Taxonomy, Ecology, and Management of Hilaria jamesii on Western RangelandsUtah Agricultural Experimental Station, Utah State UniversityLogan, UtahGoogle Scholar
  33. West, N.E. 1981Nutrient cycling in desert environmentsGoodall, D.W.Perry, R.A. eds. Xeric-land Ecosystems: StructureFunctioning, and ManagementCambridge University PressCambridge, UK301324Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Daniel P. Fernandez
    • 1
    • 2
    Email author
  • Jason C. Neff
    • 1
    • 2
    • 3
  • Jayne Belnap
    • 4
  • Richard L. Reynolds
    • 2
  1. 1.Environmental StudiesUniversity of Colorado at BoulderBoulderUSA
  2. 2.U.S. Geological SurveyDenver Federal CenterDenverUSA
  3. 3.Geological Sciences and Environmental StudiesUniversity of Colorado at BoulderBoulderUSA
  4. 4.Southwest Biological Science Center, U.S. Geological SurveyMoabUSA

Personalised recommendations