Biogeochemistry

, Volume 78, Issue 2, pp 173–193

Chemical and Isotopic Switching within the Subglacial Environment of a High Arctic Glacier

Article

Abstract

Natural environmental isotopes of nitrate, sulphate and inorganic carbon are discussed in conjunction with major ion chemistry of subglacial runoff from a High Arctic glacier, Midre Lovénbreen, Svalbard. The chemical composition of meltwaters is observed to switch in accordance with subglacial hydrological evolution and redox status. Changing rapidly from reducing to oxidizing conditions, subglacial waters also depict that 15N/14N values show microbial denitrification is an active component of nutrient cycling beneath the glacier. 18O/16O ratios of sulphate are used to elucidate mechanisms of biological and abiological sulphide oxidation. Concentrations of bicarbonate appear to be governed largely by the degree of rock: water contact encountered in the subglacial system, rather than the switch in redox status, although the potential for microbiological activity to influence ambient bicarbonate concentrations is recognised. Glaciers are therefore highlighted as cryospheric ecosystems supporting microbial life which directly impacts upon the release of solute through biogeochemically mediated processes.

Keywords

Isotopes Major ion chemistry Microbial Redox status Subglacial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnerup, S.J., Jensen, K., Revsbech, N.P., Jensen, M.H., Sørensen, J. 1992Denitrification, dissimilatory reduction of nitrate to ammoniumand nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniquesAppl. Environ. Microb.58 303313Google Scholar
  2. BIO-RAD 2000a. Instruction Manual: AG 50W and AG MP-50 Cation Exchange Resins. Bio-rad laboratories, LIT203 Rev B.Google Scholar
  3. BIO-RAD 2000b. Instruction Manual: AG1, AG MP-1 and AG2 Strong Anion Exchange Resin. Bio-rad laboratories, LIT212 Rev C.Google Scholar
  4. Björnsson, H., Gjessing, Y., Hamran, S.-E., Hagen, J.O., Liestøl, O., Pálsson, F., Erlingsson, B. 1996The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo soundingJ. Glaciol.422332Google Scholar
  5. Böttcher, J., Strebel, O., Voerkelius, S., Schimdt, H.-L. 1990Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquiferJ. Hydrol.114413424CrossRefGoogle Scholar
  6. Bottrell, S.H., Tranter, M. 2002Sulphide oxidation under partly anoxic conditions at the bed of Haut Glacier D’ArollaSwitzerlandHydrol. Process.16959993CrossRefGoogle Scholar
  7. Boulton, G.S., Hindmarsh, R.C.A 1987Sediment deformation beneath glaciers: rheology and glaciological consequencesJ. Geophys. Res.9290599082Google Scholar
  8. Chang, C.C.Y., Langston, J., Riggs, M., Campbell, D.H., Silva, S.R, Kendall, C. 1999A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrationsCan. J. Fish. Aquat. Sci.5618561864CrossRefGoogle Scholar
  9. Clark I.D. and Fritz P. 1997. Environmental Isotopes in Hydrogeology. Lewis.Google Scholar
  10. Collins, D.N. 1978Hydrology of an Alpine glacier as indicated by the chemical composition of meltwaterZeitschrift für Gletscherkunde und Glazialgeologie13219238Google Scholar
  11. Collins, D.N. 1979Hydrochemistry of melt waters draining from an Alpine glacierArctic Alpine Res.11307324CrossRefGoogle Scholar
  12. Einsiedl F., Maloszewski P. and Stichler W. 2005. Estimation of denitrification potential in a karst spring using the isotopes of 15N and 18O of NO3 . BiogeochemistryGoogle Scholar
  13. FOSS-Tecator 2000. Application note: Determination of ammonium in water by Fiastar 5000 (AN5241).Google Scholar
  14. Golterman, H.L., Clymo, R.S., Ohnstad, M.A.M. 1978Methods for physical and chemical analysis of fresh waters, 2nd ed., IBP Handbook, number 8Blackwell Scientific PublicationsOxford, Edinburgh, London, MelbourneGoogle Scholar
  15. Heaton, T.H.E., Wynn, P.M., Tye, A. 2004Low 15N/14N ratios for nitrate in snow in the High Arctic (79°N)Atmos. Environ.3856115621CrossRefGoogle Scholar
  16. Hjelle, A. 1993Geology of SvalbardNorsk PolarinstituttOsloGoogle Scholar
  17. Hodson, A., Tranter, M., Vatne, G. 2000Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspectiveEarth Surface Proc. Land.2514471471CrossRefGoogle Scholar
  18. Hodson, A.J., Fergusson, R.I. 1999Fluvial suspended sediment transport from cold and warm based glaciers in SvalbardEarth Surface Proc. Land.24957974CrossRefGoogle Scholar
  19. Hodson, A.J., Mumford, P.N., Kohler, J., Wynn, P.M. 2005The High Arctic glacial ecosystem: new insights from nutrient budgetsBiogeochemistry72233256CrossRefGoogle Scholar
  20. Holloway, J.M., Dahlgren, R.A., Hansen, B., Casey, W.H. 1998Contribution of bedrock nitrogen to high nitrate concentrations in stream waterNature395785788CrossRefGoogle Scholar
  21. Hooke, R., Le, B., Laumann, T., Kohler, J. 1990Subglacial water pressures and the shape of subglacial conduitsJ. Glaciol.366771Google Scholar
  22. Horibe, Y., Shigehara, K., Takakuwa, Y. 1973Isotope separation factor in carbon dioxide-water system and isotopic composition of atmospheric oxygenJ. Geophys. Res.7826252629Google Scholar
  23. Hwang H.-H., Liu C.-L.J. and Hackley K.C. 1999. Method improvement for oxygen isotope analysis in nitrates. Geological Society of America Abstracts with programs North-Central Section, 31, p. A-23 No. 5, April 22–23, Champaign, Il.Google Scholar
  24. Jones Chromatography 2001. Catalogue of Sample Preparation Products and Services. International sorbent technology.Google Scholar
  25. Kendall C. 1998. Tracing nitrogen sources and cycling in catchments. In: Kendall C. and McDonnell J.J. (eds), Isotope Tracers in Catchment Hydrology. Wiley.Google Scholar
  26. Korom, S.F. 1992Natural denitrification in the saturated zone: A reviewWater Resour. Res.2816571668CrossRefGoogle Scholar
  27. Lamb, H.R., Tranter, M., Brown, G.H., Hubbard, B.P., Sharp, M.J., Smart, C.C., Willis, I.C., Nielsen, M.K. 1995The composition of subglacial meltwaters sampled from boreholes at the Haut Glacier D’ArollaSwitzerlandInt. Assoc. Hydrolog. Sci. Public.228395403Google Scholar
  28. Lehmann, M.F., Reichert, P., Bernasconi, S.M., Barbieri, A., McKenzie, J.A. 2003Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zoneGeochimica Cosmochimica Acta6725292542CrossRefGoogle Scholar
  29. Lliboutry, L. 1968General theory of subglacial cavitation and sliding of temperate glaciersJ. Glaciol.72158Google Scholar
  30. Lloyd, R.M. 1967Oxygen-18 composition of oceanic sulphateScience15612281231Google Scholar
  31. Lloyd, R.M. 1968Oxygen isotope behaviour in the sulphate-water systemJ. Geophys. Res.7360996209CrossRefGoogle Scholar
  32. McQuaker, N.R., Kluckner, P.D., Sandberg, D.K. 1983Chemical analysis of acidic precipitation: pH and acidity determinationsEnviron. Sci. Technol.17431439CrossRefGoogle Scholar
  33. Mingram, B., Brauer, K. 2001Ammonium concentration and nitrogen isotope composition in meta-sedimentary rocks from different tectonmetamorphic units of the European Variscan BeltGeochimica et Cosmochimica Acta65273287CrossRefGoogle Scholar
  34. Nienow, P.W., Sharp, M.J., Willis, I.C. 1998Seasonal changes in the morphology of the subglacial drainage systemHaut Glacier D’ArollaSwitzerlandEarth Surface Proc. Land.23825843CrossRefGoogle Scholar
  35. Nye, J.F. 1973Water at the Bed of a Glacier Symposium on the Hydrology of GlaciersIASH publication, Cambridge23189194Google Scholar
  36. Panno, S.V., Hackley, K.C., Hwang, H.H., Kelly, W.R. 2001Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicatorsChem. Geol.179113128CrossRefGoogle Scholar
  37. Parkes J., Kivimaki A.L., Bottrell S.H., Raiswell R., Skidmore M., Tranter M. and Wadham J.L. 2001. Microbial utilisation of bedrock components during chemical weathering in subglacial environments. Conference draftEarth system processes – Global meeting (June 24th–28th2001).Google Scholar
  38. Rippin, D., Willis, I., Arnold, N., Hodson, A.J., Moore, J., Kohler, J., Björnsson, H. 2003Changes in geometry and subglacial drainage of Midre Lovenbreen, Svalbarddetermined from digital elevation modelsEarth Surface Proc. Land.28273298CrossRefGoogle Scholar
  39. Rohm and Haas 2001. Product data sheet: Amberlite XAD7HP industrial grade polymeric adsorbent. <http://www.advancedbiosciences.com> Google Scholar
  40. Rothlisberger, H. 1972Water pressure in intra- and sub-glacial channelsJ. glaciol.11177203Google Scholar
  41. Samuelsson, M.-O. 1985Dissimilatory nitrate reduction to nitritenitrous oxide and ammonium by Pseudomonas putrefaciensAppl. Environ. Microbiol.50812815Google Scholar
  42. Schurmann, A., Schroth, M.H., Saurer, M., Bernasconi, S.M., Zeyer, J. 2003Nitrate-consuming processes in a petroleum-contaminated aquifer quantified using push-pull tests combined with 15N isotope and acetylene-inhibition methodsJ. Contam. Hydrol.1919119Google Scholar
  43. Sharp, M., Tranter, M., Brown, G.H., Skidmore, M. 1995Rates of chemical denudation and CO2 drawdown in a glacier-covered Alpine catchmentGeology236164CrossRefGoogle Scholar
  44. Sharp, M., Parkes, J., Cragg, B., Fairchild, I.J., Lamb, H., Tranter, M. 1999Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cyclingGeology27107110CrossRefGoogle Scholar
  45. Shaw, E.M. 1994Hydrology in PracticeChapman and HallLondonGoogle Scholar
  46. Sickman, J.O., Laydecker, A., Melack, J.M. 2001Nitrogen mass balances and abiotic controls on N retention and yield in high-elevation catchments of the Sierra NevadaCaliforniaUnited StatesWater Res. Res.3714451461CrossRefGoogle Scholar
  47. Silva, S.R., Kendall, C., Wilkison, D.H., Ziegler, A.C., Chang, C.C.Y., Avanzino, R.J. 2000A new method for collection of nitrate from freshwater and the analysis of nitrogen and oxygen isotope ratiosJ. Hydrol.2282236CrossRefGoogle Scholar
  48. Skidmore, M., Foght, J.M., Sharp, M. 2000Microbial Life Beneath a High Arctic GlacierAppl. Environ. Microb.6632143220CrossRefGoogle Scholar
  49. Taylor, B.E., Wheeler, M.C, Nordstrom, D.K 1984Isotope composition of Sulphate in acid mine drainage as a measure of bacterial oxidationNature308538541CrossRefGoogle Scholar
  50. Tranter, M., Raiswell, R. 1991The composition of the englacial and subglacial component in bulk melt waters draining the GornergletscherSwitzerlandJ. Glaciol.375966Google Scholar
  51. Tranter, M., Brown, G., Raiswell, R., Sharp, M., Gurnell, A. 1993A conceptual model of solute acquisition by Alpine glacial meltwatersJ. Glaciol.39573581Google Scholar
  52. Tranter, M., Brown, G.H., Hodson, A., Gurnell, A.M., Sharp, M.J. 1994Variations in the nitrate concentration of glacial runoff in Alpine and sub-polar environmentsIAHS Publication223299311Google Scholar
  53. Tranter, M., Sharp, M.J., Brown, G.H., Willis, I.C., Hubbard, B.P., Nielson, M.K., Wsmart, C.C., Gordon, S., Tulley, M., Lamb, H.R. 1997Variability in the chemical composition of in situ subglacial meltwatersHydrol. Process.115977CrossRefGoogle Scholar
  54. Tranter, M., Sharp, M.J., Lamb, H.R., Brown, G.H., Hubbard, B.P., Willis, I.C 2002aGeochemical weathering at the bed of Haut Glacier d’ArollaSwitzerland – a new modelHydrol. Process.16959993CrossRefGoogle Scholar
  55. Tranter, M., Huybrechts, P., Munhoven, G., Sharp, M.J., Brown, G.H., Jones, I.W., Hodson, A.J., Hodgkins, R., Wadham, J.L. 2002bDirect effect of ice sheets on Terrestrial bicarbonatesulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrationsChem. Geol.1903344CrossRefGoogle Scholar
  56. Everdingen, R.O., Krouse, H.R. 1985Isotope composition of sulphates generated by bacterial and abiological oxidationNature315395396CrossRefGoogle Scholar
  57. Wadham, J.L., Tranter, M., Dowdeswell, J.A. 2000Hydrochemistry of melt waters draining a polythermal-basedhigh Arctic glaciersouth Svalbard: II. Winter and early SpringHydrol. Process.1417671786CrossRefGoogle Scholar
  58. Wadham, J.L., Bottrell, S., Tranter, M., Raiswell, R. 2004Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacierEarth Planet. Sci. Lett.219341355CrossRefGoogle Scholar
  59. Wassenaar, L.I. 1995Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3Appl. Geochem.10391405CrossRefGoogle Scholar
  60. Weertman, J. 1972General theory of water flow at the base of a glacier or ice sheetRev. Geophys. Space Phys.10287333Google Scholar
  61. Wynn P. 2004. The provenance and fate of nitrogen in arctioc glacial meltwaters: an isotopic approach. Unpublished Ph.D thesis. University of Sheffield.Google Scholar
  62. Wynn P., Hodson A.J., Heaton T.H.E. and Chenery S. (Submitted). Microbial nitrate and the release of geologic-N within the subglacial environment of a high Arctic glacier. Earth Planet. Sci. Lett.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of GeographyUniversity Of SheffieldSheffieldUK
  2. 2.School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbastonUK

Personalised recommendations