Biogeochemistry

, Volume 78, Issue 2, pp 125–150 | Cite as

The Impact of Fe(III)-reducing Bacteria on Uranium Mobility

  • Michael J. Wilkins
  • Francis R. Livens
  • David J. Vaughan
  • Jonathan R. Lloyd
Article

Abstract

The ability of specialist prokaryotes to couple the oxidation of organic compounds to the reduction of Fe(III) is widespread in the subsurface. Here microbial Fe(III) reduction can have a great impact on sediment geochemistry, affecting the minerals in the subsurface, the cycling of organic compounds and the mobility of a wide range of toxic metals and radionuclides. The contamination of the environment with radioactive waste is a major concern worldwide, and this review focuses on the mechanisms by which Fe(III)-reducing bacteria can affect the solubility and mobility of one of the most common radionuclide contaminants in the subsurface, uranium. In addition to discussing how these processes underpin natural biogeochemical cycles, we also discuss how these microbial activities can be harnessed for the bioremediation of uranium-contaminated environments.

Keywords

Actinides Bioremediation Fe(III) reduction Geobacter Iron minerals Reoxidation Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., Lovley, D.R. 2003Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquiferAppl. Environ. Microbiol.6958845891CrossRefGoogle Scholar
  2. Balashova, V.V. 1985The use of molecular sulfur to oxidize H2 by the facultative anaerobe Pseudomonas Microbiology54324326Google Scholar
  3. Balashova, V.V., Zavarzin, G.A. 1980Anaerobic reduction of ferric iron by hydrogen bacteriaMicrobiology48635639Google Scholar
  4. Banaszak, J.E., Rittmann, B.E., Reed, D.T. 1999Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixturesJ. Radioanal. Nucl. Chem.241385435CrossRefGoogle Scholar
  5. Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Penn, R.L. 2000Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization productsScience289751754CrossRefGoogle Scholar
  6. Behrends, T., Cappellen, P. 2005Competition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditionsChem. Geol.220315327CrossRefGoogle Scholar
  7. Bonatti, E., Fisher, D.E., Joensuu, O., Rydell, H.S. 1971Postdepositional mobility of some transition elements, phosphorus, uranium and thorium in deep sea sedimentsGeochim. Cosmochim. Acta35189201CrossRefGoogle Scholar
  8. Bond, D.R., Lovley, D.R. 2005Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentansAppl. Environ. Microbiol.7121862189CrossRefGoogle Scholar
  9. Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R. 2002Electrode-reducing microorganisms that harvest energy from marine sedimentsScience295483485CrossRefGoogle Scholar
  10. Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., Fendorf, S. 2003Inhihition of bacterial U(VI) reduction by calciumEnviron. Sci. Technol.3718501858CrossRefGoogle Scholar
  11. Burke, I., Boothman, C., Lloyd, J.R., Mortimer, R.J.G., Livens, F.R., Morris, K. 2005Biogeochemistry of Tc in marine and freshwater sedimentsEnviron. Sci. Technol.3941094116CrossRefGoogle Scholar
  12. Caccavo, F.,Jr., Blakemore, R.P., Lovley, D.R. 1992A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New HampshireAppl. Environ. Microbiol.5832113216Google Scholar
  13. Caccavo, F.,Jr., Coates, J.D., Rossello-Mora, R.A., Ludwig, W., Schleifer, K.H., Lovley, D.R., McInerney, M.J. 1996Geovibrio ferrireducensa phylogenetically distinct dissimilatory Fe(III)-reducing bacteriumArch. Microbiol.165370376CrossRefGoogle Scholar
  14. Caccavo, F.,Jr., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., McInerney, M.J. 1994Geobacter sulfurreducens sp. nov., a hydrogen and acetate-oxidizing dissimilatory metal reducing microorganismAppl. Environ. Microbiol.6037523759Google Scholar
  15. Canfield, D.E. 1989Reactive iron in marine sedimentsGeochim. Cosmochim. Acta53619632CrossRefGoogle Scholar
  16. Chapelle, F.H. 1993Ground-Water Microbiology and GeochemistryJohn WileyNew YorkGoogle Scholar
  17. Charlet, L., Liger, E., Gerasimo, P. 1998aDecontamination of TCE- and U-rich waters by granular iron: role of sorbed Fe(II)J. Environ. Eng.1242530CrossRefGoogle Scholar
  18. Charlet, L., Silvester, E., Liger, E. 1998bN-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface FeIIIOFeIIOHo species, as major reductantChem. Geol.1518593CrossRefGoogle Scholar
  19. Childers, S.E., Ciufo, S., Lovley, D.R. 2002Geobacter metallireducens access Fe(III) oxide by chemotaxisNature416767769CrossRefGoogle Scholar
  20. Coates, J.D., Ellis, D.J., Gaw, C.V., Lovley, D.R. 1999Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquiferInt. J. Syst. Bacteriol.4916151622CrossRefGoogle Scholar
  21. Coates, J.D., Lonergan, D.J., Philips, E.J.P., Jenter, H., Lovley, D.R. 1995Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acidsArch. Microbiol.164406413CrossRefGoogle Scholar
  22. Cornell, R.M., Schwertmann, U. 1996The Iron oxides: StructureProperties, Reactions, Occurrence and UsesVCH PublishersNew YorkGoogle Scholar
  23. Crowley, J.D., Ahearne, J.F. 2002Managing the environmental legacy of U.S. Nuclear weapons productionAm. Sci.90514523CrossRefGoogle Scholar
  24. Elias, D.A., Krumholz, L.R., Wong, D., Long, P.E., Suflita, J.M. 2003aCharacterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailingsMicrob. Ecol.468391CrossRefGoogle Scholar
  25. Elias, D.A., Senko, J.M., Krumholz, L.R. 2003bA procedure for quantitation of total oxidized uranium for bioremediation studiesJ. Microbiol. Meth.53343353CrossRefGoogle Scholar
  26. Finneran, K.T., Anderson, R.T., Nevin, K.P., Lovley, D.R. 2002aPotential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reductionSoil Sed. Contam.11339357CrossRefGoogle Scholar
  27. Finneran, K.T., Housewright, M.E., Lovley, D.R. 2002bMultiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sedimentsEnviron. Microbiol.4510516CrossRefGoogle Scholar
  28. Flury, M., Czigany, S., Chen, G., Harsh, J.B. 2004Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strengthJ. Contam. Hydrol.71111126CrossRefGoogle Scholar
  29. Francis, A.J., Dodge, C.J., Lu, F., Halada, G.P., Clayton, C.R. 1994XPS and XANES studies of uranium reduction by Clostridium spEnviron. Sci. Technol.28636639CrossRefGoogle Scholar
  30. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., Li, S.-M. 1998Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacteriumGeochim. Cosmochim. Acta6232393257CrossRefGoogle Scholar
  31. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.-M.W., Krupka, K.M. 2000Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacteriumGeochim. Cosmochim. Acta6430853098CrossRefGoogle Scholar
  32. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Kukkadapu, R.K., McKinley, J.P., Heald, S.M., Liu, C., Plymale, A.E. 2004Reduction of TcO 4 by sediment-associated biogenic Fe(II)Geochim. Cosmochim. Acta6831713187CrossRefGoogle Scholar
  33. Gadd G.M. 2005. Microbial interactions with metals/radionuclides: the basis of bioremediation. In: Livens F.R. and Keith-Roach M.J. (eds.), Interactions of Microorganisms With Radionuclides. Elsevier, pp. 179–203.Google Scholar
  34. Ganesh, R., Robinson, K., Reed, G., Sayler, G. 1997Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteriaAppl. Environ. Microbiol.6343854391Google Scholar
  35. Glasauer, S., Weidler, P.G., Langley, S., Beveridge, T.J. 2003Controls on Fe reduction and mineral formation by a subsurface bacteriumGeochim. Cosmochim. Acta6712771288CrossRefGoogle Scholar
  36. Gorby, Y.A., Lovley, D.R. 1992Enzymatic uranium precipitationEnviron. Sci. Technol.26205207CrossRefGoogle Scholar
  37. Gorby, Y.A., Caccavo, F.,Jr., Bolton, H. 1998Microbial reduction of cobalt(III)EDTA in the presence and absence of manganese(IV) oxideEnviron. Sci. Technol.32244250CrossRefGoogle Scholar
  38. Gu, B., Wu, W.-M., Ginder-Vogel, M.A., Yan, H., Fields, M.W., Zhou, J., Fendorf, S., Criddle, C.S., Jardine, P.M. 2005aBioreduction of uranium in a contaminated soil columnEnviron. Sci. Technol.3948414847CrossRefGoogle Scholar
  39. Gu, B., Yan, H., Zhou, P., Watson, D.B., Park, M., Istok, J. 2005bNatural humics impact uranium bioreduction and oxidationEnviron. Sci. Technol.3952685275CrossRefGoogle Scholar
  40. Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K., Fendorf, S. 2003Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flowGeochim. Cosmochim. Acta6729772992CrossRefGoogle Scholar
  41. Hansel, C.M., Benner, S.G., Nico, P., Fendorf, S. 2004Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II)Geochim. Cosmochim. Acta6832173229CrossRefGoogle Scholar
  42. Hernandez, M.E., Kappler, A., Newman, D.K. 2004Phenazines and other redox-active antibiotics promote microbial mineral reductionAppl. Environ. Microbiol.70921928CrossRefGoogle Scholar
  43. Holmes, D.E., Finneran, K.T., Lovley, D.R. 2002Enrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sedimentsAppl. Environ. Microbiol.6823002306CrossRefGoogle Scholar
  44. Hsi, C.-kD., Langmuir, D. 1985Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding modelGeochim. Cosmochim. Acta4919311941CrossRefGoogle Scholar
  45. Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., Lloyd, J.R. 2004Role of metal-reducing bacteria in arsenic release from Bengal delta sedimentsNature4306871CrossRefGoogle Scholar
  46. Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J., White, D.C. 2004In situ bioreduction of technetium and uranium in a nitrate-contaminated aquiferEnviron. Sci. Technol.38468475CrossRefGoogle Scholar
  47. Jeon, B.-H., Kelly, S.D., Kemner, K.M., Barnett, M.O., Burgos, W.D., Dempsey, B.A., Roden, E.E. 2004Microbial reduction of U(VI) at the solid-water interfaceEnviron. Sci. Technol.3856495655CrossRefGoogle Scholar
  48. Jeon, B.-H., Dempsey, B.A., Burgos, W.D., Barnett, M.O., Roden, E.E. 2005Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxidesEnviron. Sci. Technol.3956425649CrossRefGoogle Scholar
  49. Johnston, J.H., Lewis, D.G. 1983A detailed study of the transformation of ferrihydrite to hematite in an aqueous medium at 92 °CGeochim. Cosmochim. Acta4718231831CrossRefGoogle Scholar
  50. Kashefi, K., Holmes, D.E., Reysenbach, A-L, Lovley, D.R. 2002Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: Isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. novAppl. Environ. Microbiol.6817351742CrossRefGoogle Scholar
  51. Kashefi, K., Tor, J.M., Nevin, K.P., Lovley, D.R. 2001Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea App. Environ. Microbiol.6732753279CrossRefGoogle Scholar
  52. Kusel, K., Dorsch, T., Acker, G., Stackebrandt, E. 1999Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucoseAppl. Environ. Microbiol.6536333640Google Scholar
  53. Langmuir, D. 1978Uranium solution – mineral equilibria at low temperatures with applications to sedimentary ore depositsGeochim. Cosmochim. Acta42547569CrossRefGoogle Scholar
  54. Liger, E., Charlet, L., Cappellen, P. 1999Surface catalysis of uranium(VI) reduction by iron(II)Geochim. Cosmochim. Acta6329392955CrossRefGoogle Scholar
  55. Liu, C.X., Gorby, Y.A., Zachara, J.M., Fredrickson, J.K., Brown, C.F. 2002Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteriaBiotech. Bioeng.80637649CrossRefGoogle Scholar
  56. Liu, C.X., Zachara, J.M., Zhong, L.R., Kukkadupa, R., Szecsody, J.E., Kennedy, D.W. 2005Influence of sediment bioreduction and reoxidation on uranium sorptionEnviron. Sci. Technol.3941254133CrossRefGoogle Scholar
  57. Lloyd, J.R. 2003Microbial reduction of metals and radionuclidesFEMS Microbiol. Rev.27411425CrossRefGoogle Scholar
  58. Lloyd, J.R., Lovley, D.R. 2001Microbial detoxification of metals and radionuclidesCurr. Opin. Biotechnol.12248253CrossRefGoogle Scholar
  59. Lloyd, J.R., Macaskie, L.E. 1996A novel phosphorimager based technique for monitoring the microbial reduction of technetiumAppl. Environ. Microbiol.62578582Google Scholar
  60. Lloyd, J.R., Macaskie, L.E. 2000

    Bioremediation of radioactive metals

    Lovley, D.R. eds. Environmental Microbe–Metal InteractionsASM PressWashington, D.C.277327
    Google Scholar
  61. Lloyd, J.R., Renshaw, J.C. 2005

    Microbial transformations of radionuclides: fundamental mechanisms and biogeochemical implications in ‘biogeochemical cycles’

    Siegel, A.Siegel, H.Siegel, R.K.O. eds. Met. Ions Biol. SystDekker MNew York
    Google Scholar
  62. Lloyd, J.R., Sole, V.A., Praagh, C.V., Lovley, D.R. 2000aDirect and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteriaAppl. Environ. Microbiol.6637433749CrossRefGoogle Scholar
  63. Lloyd, J.R., Yong, P., Macaskie, L.E. 2000bBiological reduction and removal of pentavalent Np by the concerted action of two microorganismsEnviron. Sci. Technol.3412971301CrossRefGoogle Scholar
  64. Lloyd, J.R., Chesnes, J., Glasauer, S., Bunker, D.J., Livens, F.R., Lovley, D.R. 2002Reduction of actinides and fission products by Fe(III)-reducing bacteriaGeomicrobiol. J.19103120CrossRefGoogle Scholar
  65. Lloyd, J.R., Leang, C., Hodges Myerson, A.L., Ciufo, S., Sandler, S.J., Methe, B., Lovley, D.R. 2003Biochemical and genetic characterization of PpcAa periplasmic c-type cytochrome in Geobacter sulfurreducens Biochem. J.369153161CrossRefGoogle Scholar
  66. Lloyd, J.R., Lovley, D.R., Macaskie, L.E. 2004Biotechnological application of metal-reducing bacteriaAdv. Appl. Microbiol.5385128CrossRefGoogle Scholar
  67. Lonergan, D.J., Jenter, H., Coates, J.D., Phillips, E.J.P., Schmidt, T., Lovley, D.R. 1996Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteriaJ. Bacteriol.17824022408Google Scholar
  68. Lovley, D., Phillips, E.J. 1992aReduction of uranium by Desulfovibrio desulfuricans Appl. Environ. Microbiol.58850856Google Scholar
  69. Lovley, D.R., Anderson, R.T. 2000Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurfaceHydrogeol. J.87788CrossRefGoogle Scholar
  70. Lovley, D.R., Phillips, E.J.P. 1986aAvailability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac riverAppl. Environ. Microbiol.52751757Google Scholar
  71. Lovley, D.R., Phillips, E.J.P. 1986bOrganic matter mineralization with reduction of ferric iron in anaerobic sedimentsAppl. Environ. Microbiol.51683689Google Scholar
  72. Lovley, D.R., Phillips, E.J.P. 1987Rapid assay for microbially reducible ferric iron in aquatic sedimentsAppl. Environ. Microbiol.5315361540Google Scholar
  73. Lovley, D.R., Phillips, E.R. 1988Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganeseAppl. Environ. Microbiol.5414721480Google Scholar
  74. Lovley, D.R., Phillips, E.J.P. 1992bBioremediation of uranium contamination with enzymatic uranium reductionEnviron. Sci. Technol.2622282234CrossRefGoogle Scholar
  75. Lovley, D.R., Phillips, E.J.P. 1994Reduction of chromate by Desulfovibrio vulgarisits c 3 cytochromeAppl. Environ. Microbiol.60726728Google Scholar
  76. Lovley, D.R., Woodward, J.C. 1996Mechanisms for chelator stimulation of microbial Fe(III)-oxide reductionChem. Geol.1321924CrossRefGoogle Scholar
  77. Lovley, D.R., Phillips, E.J.P., Lonergan, D.J. 1989Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens Appl. Environ. Microbiol.55700706Google Scholar
  78. Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., Landa, E. 1991Microbial reduction of uraniumNature350413416CrossRefGoogle Scholar
  79. Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S. 1993aGeobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metalsArch. Microbiol.159336344CrossRefGoogle Scholar
  80. Lovley, D.R., Roden, E.E., Phillips, E.J.P., Woodward, J.C. 1993bEnzymatic iron and uranium reduction by sulfate reducing bacteriaMarine Geol.1134153CrossRefGoogle Scholar
  81. Lovley, D.R., Widman, P.K., Woodward, J.C., Phillips, E.J.P. 1993cReduction of uranium by cytochrome c 3 of Desulfovibrio vulgaris Appl. Environ. Microbiol.5935723576Google Scholar
  82. Lovley, D.R., Phillips, E.J.P., Lonergan, D.J., Widman, P.K. 1995Fe(III) and S(0) reduction by Pelobacter carbinolicus Appl. Envrion. Microbiol.6121322138Google Scholar
  83. Lovley, D.R., Woodward, J.C., Chapelle, F.H. 1996Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) formsAppl. Environ. Microbiol.62288291Google Scholar
  84. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., Woodward, J.C. 1996Humic substances as electron acceptors for microbial respirationNature382445448CrossRefGoogle Scholar
  85. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P. 1998Humic substances as a mediator for microbially catalyzed metal reductionActa Hydrochim. Hydrobiol.26152157CrossRefGoogle Scholar
  86. Lovley, D.R., Fraga, J.L., Coates, J.D., Blunt-Harris, E.L. 1999Humics as an electron donor for anaerobic respirationEnviron. Microbiol.18998CrossRefGoogle Scholar
  87. Lovley, D.R., Holmes, D.E., Nevin, K.P. 2004Dissimilatory Fe(III) and Mn(IV) reductionAdv. Microbial. Phys.49219286Google Scholar
  88. Macaskie, L.E. 1991The application of biotechnology to the treatment of wastes produced from nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streamsCrit. Rev. Biotechnol.1141112Google Scholar
  89. Macaskie L.E. and Lloyd J.R. 2002. Microbial interactions with radioactive wastes and potential applications. In: Livens F.R. and Keith-Roach M.J. (eds.), Interactions of Microorganisms with Radionuclides. Elsevier, 343–381.Google Scholar
  90. Macdonald, J.A., Kavanaugh, M.C. 1994Restoring contaminated groundwater – an achievable goalEnviron. Sci. Technol.28362A368AGoogle Scholar
  91. Mackay, D.M., Cherry, J.A. 1989Groundwater contamination: pump-and-treat remediationEnviron. Sci. Technol.23630636CrossRefGoogle Scholar
  92. McKinley, J.P., Zeissler, C.J., Zachara, J.M., Serne, R.J., Lindstrom, R.M., Schaef, H.T., Orr, R.D. 2001Distribution and retention of Cs-137 in sediments at the Hanford siteWashingtonEnviron. Sci. Technol.3534333441CrossRefGoogle Scholar
  93. Methe, B., Fraser, C.M. 2004Roll with the flow: microbial masters of redox chemistryTrends Microbiol.12439441CrossRefGoogle Scholar
  94. Missana, T., Maffiotte, C., Garcia-Gutierrez, M. 2003Surface reactions kinetics between nanocrystalline magnetite and uranylJ. Colloid Interf. Sci.261154160CrossRefGoogle Scholar
  95. Morris, D.E. 2002Redox energetics and kinetics of uranyl coordination complexes in aqueous solutionInorg. Chem.4135423547CrossRefGoogle Scholar
  96. Morrison, S.J., Cahn, L.S. 1991Mineralogical residence of alpha-emitting contamination and implications for mobilization from uranium mill tailingsJ. Contam. Hydrol.8121CrossRefGoogle Scholar
  97. Moser, D.P., Fredrickson, J.K., Geist, D.R., Arntzen, E.V., Peacock, A.D., Li, S.M.W., Spadoni, T., McKinley, J.P. 2003Biogeochemical processes and microbial characteristics across groundwater-surface water boundaries of the Hanford reach of the Columbia riverEnviron. Sci. Technol.3751275134CrossRefGoogle Scholar
  98. Myers, C.R., Carstens, B.P., Antholine, W.E., Myers, J.M. 2000Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1J. Appl. Microbiol.8898106CrossRefGoogle Scholar
  99. Myers, C.R., Myers, J.M. 1992Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1J. Bacteriol.17434293438Google Scholar
  100. Myers, C.R., Myers, J.M. 1997Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochromeBiochim. Biophys. Acta1326307318Google Scholar
  101. Myers, C.R., Nealson, K.H.N. 1990Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and Fe(III) in Shewanella putrefaciens MR-1J. Bacteriol.17262326238Google Scholar
  102. Nakata, K., Nagasaki, S., Tanaka, S., Sakamoto, Y., Tanaka, T., Ogawa, H. 2002Sorption and reduction of neptumium(V) on the surface of iron oxidesRadiochim. Acta.90665669CrossRefGoogle Scholar
  103. Nevin, K.P., Lovley, D.R. 2002aMechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans Appl. Environ. Microbiol.6822942299CrossRefGoogle Scholar
  104. Nevin, K.P., Lovley, D.R. 2002bMechanisms for Fe(III) oxide reduction in sedimentary environmentsGeomicrobiol. J.19141159CrossRefGoogle Scholar
  105. North, N.N., Dollhopf, S.L., Petrie, L., Istok, J.D., Balkwill, D.L., Kostka, J.E. 2004Change in bacterial community structure during in situ biostimulation of subsurface sediment co-contaminated with uranium and nitrateAppl. Environ. Microbiol.7049114920CrossRefGoogle Scholar
  106. Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A., Lovley, D.R. 2004aResistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwaterAppl. Environ. Microbiol.7075587560CrossRefGoogle Scholar
  107. Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A., Lovley, D.R. 2004bVanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwaterAppl. Environ. Microbiol.7030913095CrossRefGoogle Scholar
  108. Payne, R., Casalot, L., Rivere, T., Terry, J., Larsen, L., Giles, B., Wall, J. 2004Interaction between uranium and the cytochrome c 3 of Desulfovibrio desulfuricans strain G20Arch. Microbiol.181398406CrossRefGoogle Scholar
  109. Payne, R.B., Gentry, D.A., Rapp-Giles, B.J., Casalot, L., Wall, J.D. 2002Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c 3 mutantAppl. Environ. Microbiol.6831293132CrossRefGoogle Scholar
  110. Peacock, A., Chang, Y.J., Istok, J.D., Krumholz, L., Geyer, R., Kinsall, B., Watson, D., Sublette, K.L., White, D.C. 2004Utilization of microbial biofilms as monitors of bioremediationMicrob. Ecol.47284292CrossRefGoogle Scholar
  111. Pepper, S.E., Bunker, D.J., Bryan, N.D., Livens, F.R., Charnock, J.M., Pattrick, R.A.D., Collison, D. 2003Treatment of radioactive wastes: an x-ray absorption spectroscopy study of the reaction of technetium with green rustJ. Colloid Interf. Sci.268408412CrossRefGoogle Scholar
  112. Petrie, L., North, N.N., Dollhopf, S.L., Balkwill, D.L., Kostka, J.E. 2003Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI)Appl. Environ. Microbiol.6974677479CrossRefGoogle Scholar
  113. Pfennig, N., Biebl, H. 1976Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacteriumArch. Microbiol.110312CrossRefGoogle Scholar
  114. Phillips, E.J.P., Landa, E.R., Lovley, D.R. 1995Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reductionJ. Ind. Microbiol.14203207CrossRefGoogle Scholar
  115. Powell, B.A., Fjeld, R.A., Kaplan, D.I., Coates, J.T., Serkiz, S.M. 2004Pu(V)O 2 + adsorption and reduction by synthetic magnetite (Fe3O4)Environ. Sci. Technol.3860166024CrossRefGoogle Scholar
  116. Rai, D., Yui, M., Moore, D.A. 2003Solubility and solubility product at 22 °C of UO2(c) precipitated from aqueous U(IV) solutionsJ. Solut. Chem.32117CrossRefGoogle Scholar
  117. Reeburgh, W.S. 1983Rates of biogeochemical processes in anoxic sedimentsAnnu. Rev. Earth Planet. Sci.11269298CrossRefGoogle Scholar
  118. Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R. 2005Extracellular electron transfer via microbial nanowiresNature43510981101CrossRefGoogle Scholar
  119. Renshaw, J., Butchins, L.J.C., Livens, F.R., May, I., Charnock, J.M., Lloyd, J.R. 2005Bioreduction of uranium: environmental implications of a pentavalent intermediateEnviron. Sci. Technol.3956575660CrossRefGoogle Scholar
  120. Roden, E. 2003Fe(III) oxide reactivity toward biological versus chemical reductionEnviron. Sci. Technol.3713191324CrossRefGoogle Scholar
  121. Roden, E. 2004a

    Analysis of Fe(III) oxide reactivity toward long-term bacterial vs. chemical reduction

    Wanty, R.B.Seal, R.R.,II eds. Proceedings of the 11th International Symposium on Water–Rock InteractionA. A. BalkemaNew York12271230
    Google Scholar
  122. Roden, E.E. 2004bAnalysis of long-term bacterial vs. chemical Fe(III) oxide reduction kineticsGeochim. Cosmochim. Acta6832053216CrossRefGoogle Scholar
  123. Roden, E.E., Lovley, D.R. 1993Dissimilatory Fe(III) reduction by the marine microorganismDesulfuromonas acetoxidans Appl. Environ. Microbiol.59734742Google Scholar
  124. Roden, E.E., Urrutia, M.M. 1999Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxidesEnviron. Sci. Technol.3318471853CrossRefGoogle Scholar
  125. Roden, E.E., Zachara, J.M. 1996Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growthEnviron. Sci. Technol.3016181628CrossRefGoogle Scholar
  126. Roden, E.E., Urrutia, M.M., Mann, C.J. 2000Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactorsAppl. Environ. Microbiol.6610621065CrossRefGoogle Scholar
  127. Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D., Lovley, D.R. 1999Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquiferAppl. Environ. Microbiol.6530563063Google Scholar
  128. Rossello-Mora, R.A., Caccavo, F.,Jr., Osterlehner, N., Springer, N., Spring, S., Schuler, D., Ludwig, W., Amann, R., Vannacanneyt, M., Schleifer, K.H. 1994Isolation and taxonomic characterization of a halotolerantfacultative anaerobic iron-reducing bacteriumSyst. Appl. Microbiol.17569573Google Scholar
  129. Rusin, P.A., Quintana, L., Brainard, J.R., Strietelmeier, B.A., Tait, C.D., Ekberg, S.A., Palmer, P.D., Newton, T.W., Clark, D.L. 1994Solubilization of plutonium hydrous oxide by iron reducing bacteriaEnviron. Sci. Technol.2816861690CrossRefGoogle Scholar
  130. Schwertmann U. and Taylor R.M. 1989. Iron oxides. Minerals in Soil Environments. Soil Science Society of AmericaMadison, Wisconsin.Google Scholar
  131. Schwertmann, U., Schulze, D.G., Murad, E. 1982Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and mossbauer spectroscopySoil Sci. Soc. Am. J.46869874CrossRefGoogle Scholar
  132. Schwertmann, U., Friedl, J., Stanjek, H. 1999From Fe(III) ions to ferrihydrite and then to hematiteJ. Colloid Interf. Sci.209215223CrossRefGoogle Scholar
  133. Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., Lovley, D.R. 1998Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganismsEnviron. Sci. Technol.3229842989CrossRefGoogle Scholar
  134. Seaborg, G.T. 1993Overview of the actinide and lanthanide (the F) elementsRadiochim. Acta61115122Google Scholar
  135. Senko, J.M., Istok, J.D., Suflita, J.M., Krumholz, L.R. 2002In-situ evidence for uranium immobilization and remobilizationEnviron. Sci. Technol.3614911496CrossRefGoogle Scholar
  136. Senko, J.M., Mohamed, Y., Dewers, T.A., Krumholz, L.R. 2005Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidationEnviron. Sci. Technol.3925292536CrossRefGoogle Scholar
  137. Shelobolina, E.S., O’Neill, K., Finneran, K.T., Hayes, L.A., Lovley, D.R. 2003Potential for in situ bioremediation of a low-pH, high-nitrate uranium-contaminated groundwaterSoil Sed. Contam.12865884Google Scholar
  138. Snoeyenbos-West, O., Nevin, K.P., Anderson, R.T., Lovley, D.R. 2000Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sedimentsMicrobial Ecol.39153167CrossRefGoogle Scholar
  139. Straub, K.L., Benz, M., Schink, B. 2001Iron metabolism in anoxic environments at near neutral pHFEMS Microbiol. Ecol.34181186Google Scholar
  140. Suzuki, Y., Kelly, S.D., Kemner, K.M., Banfield, J.F. 2002Nanometre-size products of uranium bioreductionNature419134CrossRefGoogle Scholar
  141. Suzuki, Y., Kelly, S.D., Kemner, K.M., Banfield, J.F. 2005Direct microbial reduction and subsequent preservation of uranium in natural near-surface sedimentAppl. Environ. Microbiol.7117901797CrossRefGoogle Scholar
  142. Tebo, B.M., Obraztsova, A.Y. 1998Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptorsFEMS Microbiol. Lett.162193198Google Scholar
  143. Thamdrup, B. 2000Bacterial manganese and iron reduction in aquatic sedimentsAdv. Microbiol. Ecol.164184Google Scholar
  144. Towe, K.M., Bradley, W.F. 1967Mineralogical constitution of colloidal ‘hydrous ferric oxides’J. Colloid Interf. Sci.24384392CrossRefGoogle Scholar
  145. Truex, M.J., Peyton, B.M., Valentine, N.B., Gorby, Y.A. 1997Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditionsBiotechnol. Bioeng.55490496CrossRefGoogle Scholar
  146. Urrutia, M.M., Roden, E.E., Zachara, J.M. 1999Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxidesEnviron. Sci. Technol.3340224028CrossRefGoogle Scholar
  147. Vargas, M., Kashefi, K., Blunt-Harris, E.L., Lovley, D.R. 1998Microbiological evidence for Fe(III) reduction on early earthNature3956567CrossRefGoogle Scholar
  148. Wade, R.,Jr., DiChristina, T.J. 2000Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens FEMS Microbiol. Letts.184143148Google Scholar
  149. Wan, J., Tokunaga, T.K., Brodie, E., Wang, Z., Zheng, Z., Herman, D., Hazen, T.C., Firestone, M.K., Sutton, S.R. 2005Reoxidation of bioreduced uranium under reducing conditionsEnviron. Sci. Technol.3961626169CrossRefGoogle Scholar
  150. Wersin, P., Hochella, M.F.,Jr., Persson, P., Redden, G., Leckie, J.O., Harris, D.W. 1994Interaction between aqueous uranium (VI) and sulfide minerals: Spectoscopic evidence for sorption and reductionGeochim. Cosmochim. Acta5828292843CrossRefGoogle Scholar
  151. Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F., Fendorf, S. 2000Inhibition of bacterially promoted uranium reduction: Ferric (hydr)oxides as competitive electron acceptorsEnviron. Sci. Technol.3421902195CrossRefGoogle Scholar
  152. Wildung, R.E., Li, S.W., Murray, C.J., Krupka, K.M., Xie, Y., Hess, N.J., Roden, E.E. 2004Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potentialFEMS Microbiol. Ecol.49151162CrossRefGoogle Scholar
  153. Zachara, J.M., Fredrickson, J.K., Shu-Mei, L., Kennedy, D.W., Smith, S.C., Gassman, P.L. 1998Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materialsAm. Mineral.8314261443Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Michael J. Wilkins
    • 1
  • Francis R. Livens
    • 1
  • David J. Vaughan
    • 1
  • Jonathan R. Lloyd
    • 1
  1. 1.Williamson Research Centre for Molecular Environmental Science, and School of Earth, Atmospheric and Environmental SciencesThe University of ManchesterManchesterUK

Personalised recommendations