Biogeochemistry

, Volume 76, Issue 1, pp 161–185

Tracing Sources of Streamwater Sulfate During Snowmelt Using S and O Isotope Ratios of Sulfate and 35S Activity

  • James B. Shanley
  • Bernhard Mayer
  • Myron J. Mitchell
  • Robert L. Michel
  • Scott W. Bailey
  • Carol Kendall
Article

Abstract

The biogeochemical cycling of sulfur (S) was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a hydrochemical and multi-isotope approach. The snowpack and 10 streams of varying size and land use were sampled for analysis of anions, dissolved organic carbon (DOC), 35S activity, and δ34S and δ18O values of sulfate. At one of the streams, δ18O values of water also were measured. Apportionment of sulfur derived from atmospheric and mineral sources based on their distinct δ34S values was possible for 7 of the 10 streams. Although mineral S generally dominated, atmospheric-derived S contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. However, most of this atmospheric sulfur was not from the melting snowpack; the direct contribution of atmospheric sulfate to streamwater sulfate was constrained by 35S mass balance to a maximum of 7%. Rather, the main source of atmospheric sulfur in streamwater was atmospheric sulfate deposited months to years earlier that had microbially cycled through the soil organic sulfur pool. This atmospheric/pedospheric sulfate (pedogenic sulfate formed from atmospheric sulfate) source is revealed by δ18O values of streamwater sulfate that remained constant and significantly lower than those of atmospheric sulfate throughout the melt period, as well as streamwater 35S ages of hundreds of days. Our results indicate that the response of streamwater sulfate to changes in atmospheric deposition will be mediated by sulfate retention in the soil.

Keywords

Isotopic tracers Oxygen-18 Sulfate Sulfur-34 Sulfur-35 Vermont Sleepers River 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alewell, C., Mitchell, M.J., Likens, G.E., Krouse, H.R. 1999Sources of stream sulfate at the Hubbard Brook Experimental Forest: Long-term analyses using stable isotopesBiogeochemistry44281299Google Scholar
  2. Alewell, C., Mitchell, M.J., Likens, G.E., Krouse, H.R. 2000Assessing the origin of sulfate deposition at the Hubbard Brook Experimental ForestJ. Environ. Qual.29759767Google Scholar
  3. Alewell, C. 2001Predicting reversibility of acidification: the European sulfur storyWater Air Soil Pollut.13012711276CrossRefGoogle Scholar
  4. Alewell, C., Novak, M. 2001Spotting zones of dissimilatory sulfate reduction in a forested catchment: the 34S–35S approachEnviron. Pollut.112369377CrossRefPubMedGoogle Scholar
  5. Bailey S.W., Mayer B. and Mitchell M.J. 2004. The influence of mineral weathering on drainage water sulfate in Vermont and New Hampshire. Hydrol. Proc. DOI: 10.1002/hyp.1410.Google Scholar
  6. Bao, H., Michalski, G.M., Thiemans, M.H. 2001Sulfate oxygen-17 anomalies in desert varnishesGeochim. Cosmochim. Acta6520292036CrossRefGoogle Scholar
  7. Burns D.A. and Kendall C. 2002. Analysis of S15N and S18O to differentiate NO3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resourc. Res. 38: 1051, doi: 10.1029/2001 WR000292.Google Scholar
  8. Campbell, D.H., Baron, J.S., Tonnessen, K.A., Brooks, P.D., Schuster, P.F. 2000Controls on nitrogen flux in alpine/subalpine watersheds of ColoradoWater Resourc. Res.363747CrossRefGoogle Scholar
  9. Clow, D.W., Mast, M.A. 1999Long-term trends in stream water and precipitation chemistry at five headwater basins in the northeastern United StatesWater Resourc. Res.35541554CrossRefGoogle Scholar
  10. Dhamala, B.R., Mitchell, M.J. 1995Sulfur speciation, vertical distribution, and seasonal variation in a northern hardwood forest soil, USACan. J. For. Res.25234243Google Scholar
  11. Driscoll, C.T., Likens, G.E., Church, M.R. 1998Recovery of soil and surface waters in the northeastern U.S. from decreases in atmospheric deposition of sulfur, WaterAir Soil Pollut105319329CrossRefGoogle Scholar
  12. Driscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eagar, C., Lambert, K.F., Likens, G.E., Stoddard, J.L., Weathers, K.C. 2001Acidic deposition in the northeastern U.S.: sources and inputs, ecosystems effects, and management strategiesBioScience51180198Google Scholar
  13. Dunne, T., Black, R.D. 1970aAn experimental investigation of runoff production in permeable soilsWater Resourc. Res.6478490Google Scholar
  14. Dunne, T., Black, R.D. 1970bPartial area contributions to storm runoff in a small New England watershedWater Resourc. Res.612961311Google Scholar
  15. Dunne, T., Black, R.D. 1971Runoff processes during snowmeltWater Resourc. Res.711601172Google Scholar
  16. Eimers, C., Dillon, P.J., Schiff, S.L. 2004A S-isotope approach to determine the relative contribution of redox processes to net SO4 export from uplandand wetland- dominated catchmentsGeochim. Cosmochim. Acta6836653674doi: 10.1016/j.gca.2004.03.010CrossRefGoogle Scholar
  17. Gbondo-Tugbawa, S.S., Driscoll, C.T., Mitchell, M.J., Aber, J.D., Likens, G.E. 2002A model to simulate the response of a Northern Hardwood Forest to changes in S depositionEcol. Appl.12823Google Scholar
  18. Genereux, D. 1998Quantifying uncertainty in tracer-based hydrograph separationsWater Resourc. Res.34915919CrossRefGoogle Scholar
  19. Johnson, C.A., Mast, M.A., Kester, C.L. 2001Use of 17O/16O to trace atmospherically-deposited sulfate in surface waters: a case study in alpine watersheds in the Rocky MountainsGeophys. Res. Lett.2844834486CrossRefGoogle Scholar
  20. Hall, L.M. 1959The geology of the St. Johnsbury QuadrangleVermont and New HampshireBulletin No. 13Vermont Development CommissionMontpelier105Google Scholar
  21. Hornbeck, J.W., Bailey, S.W., Buso, D.C., Shanley, J.B. 1997Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implicationsForest Ecol. Mgmt.937389CrossRefGoogle Scholar
  22. Kendall C., Silva S.R., Chang C.C., Campbell D.H., Burns D.A. and Shanley J.B. 1995. Use of oxygen and nitrogen isotopes to trace sources of nitrate during snowmelt in forested catchments.In: Tonnessen K.A., Williams M.W. and Tranter M. (eds), Biogeochemistry of Seasonally Snow-Covered Catchments. (Proceedings of a Boulder Symposium, July 1995), IAHS Publ. no. 228, pp. 339–347.Google Scholar
  23. Kendall, C. 1998

    Tracing nitrogen sources and cycling in catchments

    Kendall, C.McDonnell, J.J. eds. Isotope Tracers in Catchment HydrologyElsevierAmsterdam519576
    Google Scholar
  24. Kendall, K.A., Shanley, J.B., McDonnell, J.J. 1999A hydrometric and geochemical approach to testing the transmissivity feedback hypothesis during snowmeltJ. Hydrol.219188205CrossRefGoogle Scholar
  25. Kester, C.L., Baron, J.S., Turk, J.T. 2003Isotopic study of sulfate sources and residence times in a subalpine watershedEnviron. Geol.43606613Google Scholar
  26. Kroopnick, P., Craig, H. 1972Atmospheric oxygen: isotopic composiiton and solubility fractionationScience1755455Google Scholar
  27. Krouse, H.R., Grinenko, V.A. 1991Stable Isotopes: Natural and Anthropogenic Sulfur in the Environment SCOPE 43John Wiley and SonsChichester440Google Scholar
  28. Krouse H.R. and Mayer B. 2000. Sulphur and oxygen isotopes in sulphate. In: Cook P. and Herczeg A.L. (eds), Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, pp.195–231.Google Scholar
  29. Lee, C.C.-W., Savarino, J., Thiemens, M.H. 2001Mass independent oxygen isotopic composition of atmospheric sulfate: origin and implications for the present and past atmosphere of Earth and MarsGeophys. Res. Lett.2817831786CrossRefGoogle Scholar
  30. Likens, G.E., Bormann, F.H. 1995Biogeochemistry of a Forested EcosystemSpringer-VerlagNew York159Google Scholar
  31. Likens, G.E., Driscoll, C.T., Buso, D.C., Mitchell, M.J., Lovett, G.M., Bailey, S.W., Siccama, T.G., Reiners, W.A., Alewell, C. 2002The biogeochemistry of sulfur at Hubbard BrookBiogeochemistry60235316CrossRefGoogle Scholar
  32. Mast, M.A., Turk, J.T., Ingersoll, G.P., Clow, D.W., Kester, C.L. 2001Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacksAtmos. Env.3533033313CrossRefGoogle Scholar
  33. Mayer, B., Feger, K.H., Giesemann, A., Jäger, H.-J. 1995aInterpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope dataBiogeochem.305158CrossRefGoogle Scholar
  34. Mayer, B., Fritz, P., Prietzel, J., Krouse, H.R. 1995bThe use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soilsAppl. Geochem.10161173CrossRefGoogle Scholar
  35. Mayer, B., Bollwerk, S.M., Mansfeldt, T., Hütter, B., Veiver, J. 2001aThe oxygen isotope composition of nitrate generated by nitrification in acid forest soilsGeochim. Cosmochim. Acta6527432756CrossRefGoogle Scholar
  36. Mayer, B., Prietzel, J., Krouse, H.R. 2001bThe influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soilsAppl. Geochem.1610031019CrossRefGoogle Scholar
  37. Michel R.L. and Naftz D.L. 1995. Use of sulphur-35 and tritium to study runoff from an alpine glacier, Wind River Range, Wyoming. In: Tonnessen K.A., Williams M.W. and Tranter M. (eds), Biogeochemistry of Seasonally Snow-Covered Catchments. (Proceedings of a Boulder Symposium, July 1995), IAHS Publ. no. 228, pp. 441–445.Google Scholar
  38. Michel, R.L., Campbell, D.H., Clow, D.W., Turk, J.T. 2000Timescales for migration of atmospherically derived sulfate through an alpine/subalpine watershedLoch ValeColoradoWater Resourc. Res.362736CrossRefGoogle Scholar
  39. Mitchell, M.J., Krouse, H.R., Mayer, B., Stam, A.C., Zhang, Y. 1998

    Use of stable isotopes in evaluating sulfur biogeochemistry of forest ecosystems

    Kendall, C.McDonnell, J.J. eds. Catchment HydrologyElsevierAmsterdam489518
    Google Scholar
  40. Mitchell, M.J., Mayer, B., Bailey, S.W., Hornbeck, J.W., Alewell, C., Driscoll, C.T., Likens, G.E. 2001aUse of stable isotope ratios for evaluating sulfur sources and losses at the Hubbard Brook Experimental ForestWaterAir and Soil Pollut.1307586CrossRefGoogle Scholar
  41. Mitchell, M.J., McHale, P.J., Inamdar, S., Raynal, D.R. 2001bRole of within lake processes and hydrobiogeochemical changes over 16 years in a watershed in the Adirondack Mountains of New York State, USAHydrol. Proc.1519511965CrossRefGoogle Scholar
  42. Newman, L., Krouse, H.R., Grinenko, V.A. 1991

    Sulfur isotope variations in the atmosphere

    Krouse, H.R.Grinenko, V.A. eds. Stable Isotopes: Natural and Anthropogenic Sulfur in the Environment SCOPE 43John Wiley and SonsChichester133176
    Google Scholar
  43. Nielsen, H., Pilot, J., Grinenko, L.N., Grinenko, V.A., Lein, A.Y., Smith, J.W., Pankina, R.G. 1991

    Lithospheric sources of sulfur

    Krouse, H.R.Grinenko, V.A. eds. Stable Isotopes: Natural and Anthropogenic Sulfur in the Environment SCOPE 43John Wiley and SonsChichester65132
    Google Scholar
  44. Novak, M., Bottrell, S.H., Prechova, E. 2001Sulfur isotope inventories of atmospheric deposition, spruce forest floor and living Sphagnum along a NW-SE transect across EuropeBiogeochem.532350CrossRefGoogle Scholar
  45. Novak, M., Michel, R.L., Prechova, E., Stepanova, M. 2004The missing flux in a 35S budget for the soils of a small polluted catchmentWater Air and Soil Pollut. Focus4517529CrossRefGoogle Scholar
  46. Park, J., Mitchell, M.J., McHale, P.J., Christopher, S.F., Myers, T.P. 2003Interactive effects of changing climate and atmospheric deposition on N and S biogeochemistry in a forested watershed of the Adirondack Mountains, New York StateGlob. Change Biol.916021619CrossRefGoogle Scholar
  47. Reuss, J.O., Johnson, D.W. 1986Acid Deposition and the Acidification of Soils and Waters, Ecol. Studies 59SpringerNew YorkGoogle Scholar
  48. Rochelle, B.P., Church, M.R., David, M.B. 1987Sulfur retention at intensively studies sites in the U.S. and CanadaWater Air Soil Pollut.337383CrossRefGoogle Scholar
  49. Schindler, S.C., Mitchell, M.J., Scott, T.J., Fuller, R.D., Driscoll, C.T. 1986Incorporation of 35S-sulfate into inorganic and organic constituents of two forest soilsSoil Sci. Soc. Am. J.50457463Google Scholar
  50. Shanley, J.B., Kendall, C., Smith, T.E., Wolock, D.M., McDonnell, J.J. 2002aControls on old and new water contributions to streamflow in some nested catchments in Vermont USAHydrol. Proc.16589609CrossRefGoogle Scholar
  51. Shanley, J.B., Schuster, P.F., Reddy, M.M., Roth, D.A., Taylor, H.E., Aiken, G.R. 2002bMercury on the move during snowmelt in VermontEOSTrans. Am. Geophys. Union834548Google Scholar
  52. Shanley J.B., Clark S.F.Jr. and Denner J.C. 2002c. Patterns and trends in snowpack water equivalent at a northern Vermont site1960–2002, (Abstract). Proc. 59th Eastern Snow ConferenceJune 5–7, 2002, StoweVermontpp. 325Google Scholar
  53. Shanley, J.B., Krám, P., Hruska, J., Bullen, T.D. 2004A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid depositionWaterAir Soil Pollut.: Focus4325342CrossRefGoogle Scholar
  54. Stam, A., Mitchell, M.J., Krouse, H.R., Kahl, J.S. 1992Stable sulfur isotopes of sulfate in precipitation and stream solutions in a northern hardwood watershedWater Resourc. Res.28231236CrossRefGoogle Scholar
  55. Stoddard, J.L., Jeffries, D.S., Lükewille, A., Clair, T.A., Dillon, P.J., Driscoll, C.T., Forsius, M., Johannessen, M., Kahl, J.S., Kellogg, J.H., Kemp, A., Mannio, J., Monteith, D.T., Murdoch, P.S., Patrick, S., Rebsdorf, A., Skjelkvåle, B.L., Stainton, M.P., Traaen, T., Dam, H., Webster, K.E., Wietung, J., Wilander, A. 1999Regional trends in aquatic recovery from acidification in North America and EuropeNature401575578CrossRefGoogle Scholar
  56. Sueker, J.K., Turk, J.T., Michel, R.L. 1999Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front RangeGeomorphology276174CrossRefGoogle Scholar
  57. Titus, A.C., McDonnell, J.J., Shanley, J.B., Kendall, C. 1995Snowmelt runoff production in a small forested catchment: a combined hydrometric and isotopic tracing approach (abs), EOSTrans Am. Geophys. Union76F216Google Scholar
  58. Turk, J.T., Campbell, D.H., Spahr, N.E. 1993Use of chemistry and stable sulfur isotopes to determine sources and trends in sulfate in Colorado lakesWater Air Soil Pollut.79279298Google Scholar
  59. Zhang, Y., Mitchell, M.J., Christ, M., Likens, G.E., Krouse, H.R. 1998Stable sulfur isotopic biogeochemistry of the Hubbard Brook Experimental Forest New HampshireBiogeochem.41259275CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • James B. Shanley
    • 1
  • Bernhard Mayer
    • 2
  • Myron J. Mitchell
    • 3
  • Robert L. Michel
    • 4
  • Scott W. Bailey
    • 5
  • Carol Kendall
    • 4
  1. 1.U.S. Geological SurveyMontpelierUSA
  2. 2.Department of Geology and GeophysicsUniversity of CalgaryCalgaryCanada
  3. 3.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  4. 4.U.S. Geological SurveyMenlo ParkUSA
  5. 5.Northeastern Research Station, Hubbard Brook Experimental ForestUSDA Forest ServiceCamptonUSA

Personalised recommendations