Biogeochemistry

, Volume 76, Issue 1, pp 113–139 | Cite as

Understanding the Anodic Mechanism of a Seafloor Fuel Cell: Interactions Between Geochemistry and Microbial Activity

  • Natacha Ryckelynck
  • Hilmar A. StecherIII
  • Clare E. Reimers
Article

Abstract

Seafloor fuel cells made with graphite electrodes generate electricity by promoting electron transfer in response to a natural voltage difference (−0.7 to −0.8 V) between anoxic sediments and overlying oxic seawater. Geochemical impacts of a seafloor fuel cell on sediment solids and porewaters were examined to identify the anodic mechanisms and substrates available for current production. In an estuarine environment with little dissolved sulfide, solid-phase acid volatile sulfide and Cr2+-reducible sulfur minerals decreased significantly toward the anode after 7 months of nearly continuous energy harvesting. Porewater iron and sulfate increased by millimolar amounts. Scanning electron microscope images showed a biofilm overcoating the anode, and electron microprobe analyses revealed accumulations of sulfur, iron, silicon and phosphorus at the electrode surface. Sulfur deposition was also observed on a laboratory fuel cell anode used to generate electricity with only dissolved sulfide as an electron donor. Moreover, current densities and voltages displayed by these purely chemical cells were similar to the values measured with field devices. These results indicate that electron transfer to seafloor fuel cells can readily result in the oxidation of dissolved and solid-phase forms of reduced sulfur producing mainly S0 which deposits at the electrode surface. This oxidation product is consistent with the observed enrichment of bacteria most closely related to Desulfobulbus/Desulfocapsa genera within the anode biofilm, and its presence is proposed to promote a localized biogeochemical cycle whereby biofilm bacteria regenerate sulfate and sulfide. This electron-shuttling mechanism may co-occur while these or other bacteria use the anode directly as a terminal electron acceptor.

Keywords

Anoxic sediments Energy production Fuel cell Microbial activity Pyrite Sulfur 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P.L., Hickling, A. 1957Electrochemistry of sulfur. Part 1. Overpotential in the discharge of the sulfide ionTrans. Faraday Soc.5316261635CrossRefGoogle Scholar
  2. Allen, R.E., Parkes, R.J. 1995

    Digestion procedures for determining reduced sulfur species in bacterial cultures and in ancient and recent sediments

    Vairavamurthy, M.A.Schoonen, M.A.A. eds. Geochemical Transformations of Sedimentary SulfurAmerican Chemical SocietyWashington D.C.243257
    Google Scholar
  3. Ateya, B.G., Alkharafi, F.M. 2002aAnodic oxidation of sulfide ions from chloride brinesElectrochem. Commun.4231238CrossRefGoogle Scholar
  4. Ateya, B.G., Alkharafi, F.M. 2002bElectrochemical removal of hydrogen sulfide from geothermal brinesElectrochem. Soc. Proc.158798Google Scholar
  5. Ateya, B.G., Alkharafi, F.M., Al-Azab, S.S. 2003Electrodeposition of sulfur from sulfide contaminated brinesElectrochem. Solid-State Lett.6C137C140CrossRefGoogle Scholar
  6. Baas Becking, L.G.M., Kaplan, I.R., Moore, D. 1960Limits of the natural environment in terms of pH and oxidation-reduction potentialsJ. Geol.68243284Google Scholar
  7. Bacon, F.T., Fry, T.M. 1970Review lecture: the development and practical application of fuel cells. Proceedings of the Royal Society of LondonSeries A, Math. Phys. Sci.334427452Google Scholar
  8. Berner, R.A. 1963Electrode studies of hydrogen sulfide in marine sedimentsGeochim. Cosmochim. Acta27563575CrossRefGoogle Scholar
  9. Berner, R.A. 1964Stability fields of iron minerals in anaerobic marine sedimentsJ. Geol.72826834Google Scholar
  10. Berner, R.A. 1970Sedimentary pyrite formationAm. J. Sci.268123Google Scholar
  11. Berner, R.A. 1978Sulfate reduction and the rate of deposition of marine sedimentsEarth Planet. Sci. Lett.37492498CrossRefGoogle Scholar
  12. Berner, R.A. 1984Sedimentary pyrite formation: an updateGeochim. Cosmochim. Acta48605615CrossRefGoogle Scholar
  13. Berner, R.A. 1985Sulfate reduction, organic matter decomposition and pyrite formation. Philosophical Transactions of the Royal Society of LondonSeries A, Math. Phys. Sci.3152537Google Scholar
  14. Berner, R.A., Raiswell, R. 1984C/S method for distinguishing freshwater from marine sedimentary rocksGeology12365368CrossRefGoogle Scholar
  15. Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R. 2002Electrode-reducing microorganisms that harvest energy from marine sedimentsScience295483485CrossRefPubMedGoogle Scholar
  16. Bond, D.R., Lovley, D.R. 2003Electricity production by Geobacter sulfurreducens attached to electrodesAppl. Environ. Microbiol.6915481555CrossRefPubMedGoogle Scholar
  17. Canfield, D.E. 1989aReactive iron in marine sedimentsGeochim. Cosmochim. Acta53619632CrossRefGoogle Scholar
  18. Canfield, D.E. 1989bSulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environmentsDeep-Sea Res.36121138CrossRefGoogle Scholar
  19. Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A. 1986The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shalesChem. Geol.54149155CrossRefGoogle Scholar
  20. Cline, J.D. 1969Spectrophotometric determination of hydrogen sulfide in natural watersLimnol. Oceanogr.14454458Google Scholar
  21. Ferdelman, T.G., Church, T.M., Luther, G.W.,III 1991Sulfur enrichment of humic substances in Delaware salt marsh sediment coreGeochim. Cosmochim. Acta55979988CrossRefGoogle Scholar
  22. Finster, K., Liesack, W., Thamdrup, B. 1998Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sedimentAppl. Environ. Microbiol.64119125PubMedGoogle Scholar
  23. Fossing, H., Jørgensen, B.B. 1989Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction methodBiogeochemistry8205222CrossRefGoogle Scholar
  24. Goldhaber, M.B., Kaplan, I.R. 1975Controls and consequences of sulfate reduction rates in recent marine sedimentsSoil Sci.1194255Google Scholar
  25. Greaves, C. 1970The direct conversion of chemical energy to electricityPhys. Edu.51824CrossRefGoogle Scholar
  26. Hamilton, I.C., Woods, R. 1981An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetryJ. Electroanal. Chem.118327343CrossRefGoogle Scholar
  27. Holmes, D.E., Bond, D.R., Lovley, D.R. 2004aElectron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodesAppl. Environ. Microbiol.7012341237CrossRefGoogle Scholar
  28. Holmes, D.E., Bond, D.R., O’Neil, R.A., Reimers, C.E., Tender, L.M., Lovley, D.R. 2004bMicrobial communities associated with electrodes harvesting electricity from a variety of aquatic sedimentsMicrob. Ecol48178190CrossRefGoogle Scholar
  29. Holmes, P.R., Crundwell, F.K. 2000The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical studyGeochim. Cosmochim. Acta64263274CrossRefGoogle Scholar
  30. Jones, D.A. 1996Principles and Prevention of CorrosionPrentice HallEnglewood Cliffs, New JerseyGoogle Scholar
  31. Jørgensen, B.B. 1977The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)Limnol. Oceanogr.22814832Google Scholar
  32. Jørgensen, B.B. 1982Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environmentsPhil. Trans. Royal Soc. London, Series B298543561Google Scholar
  33. Jørgensen, B.B., Fenchel, T. 1974The sulfur cycle of a marine sediment model systemMar. Biol.24189201CrossRefGoogle Scholar
  34. Keil, R.G., Tsamakis, E., Fuh, C.B., Giddings, J.C., Hedges, J.I. 1994Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionationGeochim. Cosmochim. Acta58879893CrossRefGoogle Scholar
  35. Kostka, J.E., Luther, G.W.,III. 1994Partitioning and speciation of solid iron in saltmarsh sedimentsGeochim. Cosmochim. Acta4817011710CrossRefGoogle Scholar
  36. Lin, S., Huang, K.-M., Chen, S.-K. 2002Sulfate reduction and iron sulfide mineral formation in the southern East China continental slope sedimentDeep-Sea Res.4918371852CrossRefGoogle Scholar
  37. Lin, S., Morse, J.W. 1991Sulfate reduction and iron sulfide mineral formation in the Southern East China continental slope sedimentAm. J. Sci.295589Google Scholar
  38. Lovley, D.R., Phillips, E.J.P. 1994Novel processes for anaerobic sulfate production from elemental sulfur by sulfate reducing bacteriaAppl. Environ. Microbiol.6023942399Google Scholar
  39. McDougall, A. 1976Fuel CellsWiley & SonsNew YorkGoogle Scholar
  40. McGuire, M.M., Jallad, K.N., Ben-Amotz, D., Hamers, R.J. 2001Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopyAppl. Surf. Sci.178105115CrossRefGoogle Scholar
  41. Measures, C.I., Yuan, J., Resing, J.A. 1995Determination of iron in seawater by flow injection-analysis using in-line preconcentration and spectrophotometric detectionMar. Chem.50312CrossRefGoogle Scholar
  42. Moses, C.O., Herman, J.S. 1990Pyrite oxidation at circumneutral pHGeochim. Cosmochim. Acta55471482CrossRefGoogle Scholar
  43. Moses, C.O., Nordstrom, D.K., Herman, J.S., Mills, A.L. 1987Aqueous pyrite oxidation by dissolved oxygen and by ferric ironGeochim. Cosmochim. Acta5115611571CrossRefGoogle Scholar
  44. Müller, P.J., Suess, E. 1979Productivity, sedimentation rateand sedimentary organic matter in the oceans - I. Organic carbon preservationDeep-Sea Res.263471362CrossRefGoogle Scholar
  45. Mycroft, J.R., Bancroft, G.M., McIntyre, N.S., Lorimer, J.W., Hill, I.R. 1990Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopyJ. Electroanal. Chem.292139152CrossRefGoogle Scholar
  46. Pokrovski, G.S., Schott, J., Farges, F., Hazemann, J.-L. 2003Iron (III)–silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopyGeochim. Cosmochim. Acta6735593573CrossRefGoogle Scholar
  47. Powell, H.S. 1980Decomposition of Organic Matter in Estuarine Sediments by Sulfate Reduction: A Field Study from Yaquina Bay and Sediment Incubation ExperimentsOregon State UniversityCorvallisM.S. thesisGoogle Scholar
  48. Ransom, B., Kim, D., Kastner, M., Wainwright, S. 1998Organic matter preservation on continental slopes: importance of mineralogy and surface areaGeochim. Cosmochim. Acta6213291345CrossRefGoogle Scholar
  49. Reimers, C.E., Tender, L.M., Fertig, S.J., Wang, S. 2001Harvesting energy from the marine sediment–water interfaceEnviron. Sci. Technol.35192195CrossRefPubMedGoogle Scholar
  50. Resing, J.A., Mottl, M.J. 1992Determination of manganese in seawater using flow injection analysis with on-line preconcentration and spectrophotometric detectionAnal. Chem.6426822687CrossRefGoogle Scholar
  51. Rimstidt, J.D., Vaughan, D.J. 2003Pyrite oxidation: a state-of-the-art assessment of the reaction mechanismGeochim. Cosmochim. Acta67873880CrossRefGoogle Scholar
  52. Rozan, T.F., Taillefert, M., Trouwborst, R.E., Glazer, B.T., Ma, S. 2002Iron-sulfur-phosphorous cycling in the sediments of a shallow coastal Bay: implications for sediment nutrient release and benthic macroalgal bloomsLimnol. Oceanogr.4713461354Google Scholar
  53. Ryckelynck, N. 2004Understanding the Anodic Mechanism of a Seafloor Fuel CellOregon State UniversityCorvallisM.S. thesisGoogle Scholar
  54. Schippers, A., Jørgensen, B.B. 2002Biogeochemistry of pyrite and iron sulfide oxidation in marine sedimentsGeochim. Cosmochim. Acta668592CrossRefGoogle Scholar
  55. Stookey, L.L. 1970Ferrozine – a new spectrophotometric reagent for ironAnal. Chem.42779781CrossRefGoogle Scholar
  56. Stumm, W. 1992Chemistry of the Solid-Water Interface Processes at the Mineral-Water and Particle Water Interface in Natural SystemsWileyNew YorkGoogle Scholar
  57. Tender, L.M., Reimers, C.E., Stecher, H.W.,III, Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R. 2002Harnessing microbially generated power on the seafloorNat. Biotechnol.20821825PubMedGoogle Scholar
  58. Thamdrup, B., Canfield, D.E. 1996Pathways of carbon oxidation in continental margin sediments off central ChileLimnol. Oceanogr.4116291650PubMedGoogle Scholar
  59. Thamdrup, B., Fossing, H., Jørgensen, B.B. 1994Manganeseiron and sulfur cycling in a coastal marine sedimentAarhus Bay, DenmarkGeochim. Cosmochim. Acta5851155129CrossRefGoogle Scholar
  60. Turcotte, S.B., Benner, R.E., Riley, A.M., Li, J., Wadsworth, M.E., Bodily, D.M. 1993Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopyJ. Electroanal. Chem.347195205CrossRefGoogle Scholar
  61. Verardo, D.J., Froelich, P.N., Andrew, M. 1990Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzerDeep-Sea Res.37157165CrossRefGoogle Scholar
  62. Vijh, A.K. 1970Electrochemical principles involved in a fuel cellJ. Chem. Edu.47680682Google Scholar
  63. Walsh, J.J., Premuzic, E.T., Gaffney, J.S., Rowe, G.T., Hartbottle, G., Stoenner, R.W., Balsam, W.L., Betzer, P.R., Macko, S.A. 1985Organic storage of CO2 on the continental slope off the mid-Atlantic bightthe southeastern Bering Seaand the Peru coastDeep-Sea Res.32853883CrossRefGoogle Scholar
  64. Wang, Q., Morse, J.W. 1996Pyrite formation under conditions approximating those in anoxic sediments. I. Pathway and morphologyMar. Chem.5299121CrossRefGoogle Scholar
  65. Wijsman, J.W.M., Middelburg, J.J., Herman, P.M.J., Böttcher, M.E., Heip, C.H.R. 2001Sulfur and iron speciation in surface sediments along the northwestern margin of the Black SeaMar. Chem.74261278CrossRefGoogle Scholar
  66. Zhabina, N.N., Volkov, I.I. 1978

    A method of determination of various sulfur compounds in sea sediments and rocks

    Krumbein, W.E. eds. Environmental Biogeochemistry; Methods, metals and assessmentAnn Arbor Science PublishersMich735745
    Google Scholar
  67. Zhu, X., Li, J., Wadsworth, M.E. 1994Characterization of surface layers formed during pyrite oxidationColloid Surf. A: Physicochem. Eng. Asp.93201210CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Natacha Ryckelynck
    • 1
  • Hilmar A. StecherIII
    • 2
  • Clare E. Reimers
    • 2
  1. 1.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisUSA
  2. 2.College of Oceanic and Atmospheric SciencesOregon State University, Hatfield Marine Science CenterNewportUSA

Personalised recommendations