Biogeochemistry

, Volume 76, Issue 1, pp 69–83

Ferrous Iron Stimulates Phenol Oxidase Activity and Organic Matter Decomposition in Waterlogged Wetlands

  • Peter M. Van Bodegom
  • Rob Broekman
  • Jerry Van Dijk
  • Chris Bakker
  • Rien Aerts
Article

Abstract

Soil organic matter decomposition is limited at waterlogged conditions by the low activity of extracellular enzymes like phenol oxidases. In this paper, we show that ferrous iron (Fe2+), which is abundant in waterlogged soils, significantly stimulates phenol oxidase activity both in pure enzyme assays and in waterlogged soil slurries from nutrient-poor dune slacks. However, the effects in soil slurries were less strong than in enzyme assays. Both the addition of Fe2+ and the initial presence of Fe2+ stimulated phenol oxidase activity at the microaerophilic conditions tested. This stimulation is attributed to the catalysis of additional OH radical production, promoting the oxidation of phenolics. Subsequently, the presence of Fe2+ strongly increased total decomposition rates of soil organic matter, measured as CO2 production and Cotton strip Tensile Strength Loss. There is circumstantial evidence that this stimulation by Fe2+ could be important for decomposition in wetlands at field conditions, but its relevance compared to the effects of other compounds still needs to be elucidated. These results emphasise the crucial role of water quality in determining extracellular enzyme activity and decomposition in waterlogged wetlands.

Keywords

Anaerobic mineralisation CO2 production Phenolics Reduced iron Soil organic matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ander, P. 1994The cellobiose-oxidizing enzymes CBQ and CbO as related to lignin and cellulose degradation – a reviewFEMS Microbiol. Rev.13297312CrossRefGoogle Scholar
  2. Avena, M.J., Koopal, L.K. 1999Kinetics of humic acid adsorption at solid-water interfacesEnviron. Sci. Technol.3327392744CrossRefGoogle Scholar
  3. Beltman, B., Rouwhorst, T.G., van Kerkhoven, M.B., Krift, T., Verhoeven, J.T.A. 2000Internal eutrophication in peat soils through competition between chloride and sulphate with phosphate for binding sitesBiogeochemistry50183194CrossRefGoogle Scholar
  4. Berendse, F., Oomes, M.J.M., Altena, H.J., Visser, W. 1994A comparative study of nitrogen flows in two similar meadows affected by different groundwater levelsJ. Appl. Ecol.314048Google Scholar
  5. Box, J.D. 1983Investigation of the Folin–Ciocalteau phenol reagent for the determination of polyphenolic substances in natural watersWater Res.17511525CrossRefGoogle Scholar
  6. Braun, V. 1998Regulation of iron uptake minimizes iron-mediated oxidative stressJ. Biosci.23483489Google Scholar
  7. Dec, J., Haider, K., Bollag, J.M. 2001Decarboxylation and demethoxylation of naturally occurring phenols during coupling reactions and polymerizationSoil Sci.166660671CrossRefGoogle Scholar
  8. Jong, E., Field, J.A., Bont, J.A.M. 1994Aryl alcohols in the physiology of ligninolytic fungiFEMS Microbiol. Rev.13153188CrossRefGoogle Scholar
  9. Enoki, A., Itakura, S., Tanaka, H. 1997The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungiJ. Biotechnol.53265272CrossRefGoogle Scholar
  10. Freeman, C., Ostle, N., Kang, H. 2001aAn enzymatic ‘latch’ on a global carbon storeNature409149CrossRefGoogle Scholar
  11. Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B., Fenner, N. 2001bExport of organic carbon from peat soilsNature412785CrossRefGoogle Scholar
  12. Gómez-Toribio, V., Martinez, A.T., Martinex, M.J., Guillén, F. 2001Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngiiEur. J. Biochem.26847874793CrossRefPubMedGoogle Scholar
  13. Grootjans, A.P., Ernst, W.H.O., Stuyfzand, P.J. 1998European dune slacks: strong interactions of biology, pedogenesis and hydrologyTrends Ecol. Evol.1396100CrossRefGoogle Scholar
  14. Hammel, K.E. 1997

    Fungal degradation of lignin

    Cadisch, G.Giller, K.E. eds. Driven by Nature: Plant Litter Quality and DecompositionCAB InternationalWallingford3345
    Google Scholar
  15. Inubushi, K., Wada, H., Takai, Y. 1984Easily decomposable organic matter in paddy soilSoil Sci. Plant Nutr.30189198Google Scholar
  16. Lamers, L.P.M., Tomassen, H.B.M., Roelofs, J.G.M. 1998Sulfate-induced eutrophication and phytotoxicity in freshwater wetlandsEnviron. Sci. Technol.32199205CrossRefGoogle Scholar
  17. Lovley, D.R., Phillips, E.J.P. 1987Rapid assay for microbially reducible ferric iron in aquatic sedimentsAppl. Environ. Microbiol.5315361540Google Scholar
  18. Mai, C., Schormann, W., Hüttermann, A. 2001Chemo-enzymatically induced copolymerization of phenolics with acrylate compoundsAppl. Microbiol. Biotechnol.55177186CrossRefPubMedGoogle Scholar
  19. Maltby, E. 1988

    Use of cotton strip assay in wetland and upland environments – an international perspective

    Harrison, A.F.Latter, P.M.Walton, D.W.H. eds. Cotton Strip Assay – An Index of Decomposition in SoilsInstitute of Terrestrial EcologyGrange-over-Sands140154ITE Symposium No. 24
    Google Scholar
  20. Oomes, M.J.M., Kuikman, P.J., Jacobs, F.H.H. 1997Nitrogen availability and uptake by grassland in mesocosms at two water levels and two water qualitiesPlant Soil192249259CrossRefGoogle Scholar
  21. Pind, A., Freeman, C., Lock, M.A. 1994Enzymic degradation of phenolic materials in peatlands – measurement of phenol oxidase activityPlant Soil159227231CrossRefGoogle Scholar
  22. Pulford, I.D., Tabatabai, M.A. 1988Effect of waterlogging on enzyme activities in soilsSoil Biol. Biochem.20215219CrossRefGoogle Scholar
  23. Schnitzer, M. 1978

    Humic substances: chemistry and reactions

    Schnitzer, M.Khan, S.U. eds. Soil Organic MatterElsevierDordrecht164
    Google Scholar
  24. Sinsabaugh, R.L., Findlay, S. 1995Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson river estuaryMicrobial Ecol.30127141CrossRefGoogle Scholar
  25. Sinsabaugh, R.L., Linkins, A.E. 1988Exoenzyme activity associated with lotic epilithonFreshwater Biol.20249261Google Scholar
  26. Sival, F.P., Grootjans, A.P. 1996Dynamics of seasonal bicarbonate supply in a wet dune slack: effects on organic matternitrogen pool and vegetation successionVegetatio1263950Google Scholar
  27. Sulfita, J.M., Bollag, J.M. 1981Polymerization of phenolic compounds by a soil-enzyme complexSoil Sci. Soc. Am. J.45297302Google Scholar
  28. Tanaka, H., Itakura, S., Enoki, A. 1999Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white rot basidiomycete Trametes versicolorJ. Biotechnol.755770CrossRefPubMedGoogle Scholar
  29. Tipping, E. 1981The adsorption of aquatic humic substances by iron oxidesGeochim. Cosmochim. Acta45191199CrossRefGoogle Scholar
  30. Tipping, E., Woof, C. 1983Elevated concentrations of humic substances in a seasonally anoxic hypolimnion: evidence for co-accumulation with ironArch. Hydrobiol.98137145Google Scholar
  31. Uno, T., Nishimura, Y., Tsuboi, M., Makino, R., Iizuka, T., Ishimura, Y. 1987Two type of conformers with distinct Fe–C–O configuration in the ferrous CO complex of horseradish peroxidase. Resonance Raman and infrared spectroscopic studies with native and deuteroheme-substituted enzymesJ. Biol. Chem.26245494556PubMedGoogle Scholar
  32. Bodegom, P.M., Stams, A.J.M. 1999Influence of alternative electron acceptors on methanogenesis in rice paddy soilsChemosphere39167182CrossRefGoogle Scholar
  33. Dijk, J., Stroetenga, M., Bos, L., Bodegom, P.M., Verhoef, H.A., Aerts, R. 2004Restoration of natural seepage conditions in former agricultural grasslands results in increased rates of soil nutrient cyclingBiogeochemistry71317337CrossRefGoogle Scholar
  34. Wetzel, R.G. 1992Gradient dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystemsHydrobiologia229181198Google Scholar
  35. Wood, P.M. 1994Pathways for production of Fenton’s reagent by wood-rotting fungiFEMS Microbiol. Rev.13313320CrossRefGoogle Scholar
  36. Wright, A.L., Reddy, K.R. 2001Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soilsSoil Sci. Soc. Am. J.65588595Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Peter M. Van Bodegom
    • 1
  • Rob Broekman
    • 1
  • Jerry Van Dijk
    • 1
  • Chris Bakker
    • 2
  • Rien Aerts
    • 1
  1. 1.Department of Systems EcologyInstitute of Ecological ScienceHV AmsterdamThe Netherlands
  2. 2.Department of Ecology and Physiology of PlantsInstitute of Ecological ScienceHV AmsterdamThe Netherlands

Personalised recommendations