Biogeochemistry

, Volume 77, Issue 1, pp 25–56 | Cite as

Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance?

  • Robert Mikutta
  • Markus Kleber
  • Margaret S. Torn
  • Reinhold Jahn
Article

Abstract

Soil organic matter (OM) can be stabilized against decomposition by association with minerals, by its inherent recalcitrance and by occlusion in aggregates. However, the relative contribution of these factors to OM stabilization is yet unknown. We analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant OM in 12 subsurface horizons from 10 acidic forest soils. The results were related to properties of the mineral phase and to OM composition as revealed by CPMAS 13C-NMR and CuO oxidation. Stable OM was defined as that material which survived treatment of soils with 6 wt% sodium hypochlorite (NaOCl). Mineral-protected OM was extracted by subsequent dissolution of minerals by 10% hydrofluoric acid (HF). Organic matter resistant against NaOCl and insoluble in HF was considered as recalcitrant OM. Hypochlorite removed primarily 14C-modern OM. Of the stable organic carbon (OC), amounting to 2.4–20.6 g kg−1 soil, mineral dissolution released on average 73%. Poorly crystalline Fe and Al phases (Feo, Alo) and crystalline Fe oxides (Fed−o) explained 86% of the variability of mineral-protected OC. Atomic Cp/(Fe+Al)p ratios of 1.3–6.5 suggest that a portion of stable OM was associated with polymeric Fe and Al species. Recalcitrant OC (0.4–6.5 g kg−1 soil) contributed on average 27% to stable OC and the amount was not correlated with any mineralogical property. Recalcitrant OC had lower Δ14C and δ13C values than mineral-protected OC and was mainly composed of aliphatic (56%) and O-alkyl (13%) C moieties. Lignin phenols were only present in small amounts in either mineral-protected or recalcitrant OM (mean 4.3 and 0.2 g kg−1 OC). The results confirm that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.

Keywords

C isotopes Hydrofluoric acid Lignin Recalcitrant organic matter Sodium hypochlorite Stable organic matter 

Abbreviations

CPMAS 13C-NMR

cross-polarization magic-angle spinning 13C nuclear magnetic resonance spectroscopy

FR

fluoride reactivity

OC

organic C

OM

organic matter

MOC and MN

mineral-protected organic C and N

ROC and RN

chemically resistant (recalcitrant) organic C and N

SSA

specific surface area

XRD

x-ray diffraction

TEM

transmission electron microscopy

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almendros, G., Guadalix, M.E., Gonzalez-Vila, F.J., Martin, F. 1998Distribution of structural units in humic substances as revealed by multi-step selective degradations and C-13-NMR of successive residuesSoil Biol. Biochem.30755765CrossRefGoogle Scholar
  2. Amelung, W., Flach, K.W., Zech, W. 1999Lignin in particle-size fractions of native grassland soils as influenced by climateSoil Sci. Soc. Am. J.6312221228Google Scholar
  3. Baldock, J.A., Skjemstad, J.O. 2000Role of the soil matrix and minerals in protecting natural organic materials against biological attackOrg. Geochem.31697710CrossRefGoogle Scholar
  4. Balesdent, J. 1996The significance of organic separates to carbon dynamics and its modeling in some cultivated soilsEur. J. Soil Sci.47485493CrossRefGoogle Scholar
  5. Benner, R., Fogel, M.L., Sprague, E.K., Hodson, R.E. 1987Depletion of 13C in lignin and its implication for stable isotope studiesNature320708710Google Scholar
  6. Bird, M., Kracht, O., Derrien, D., Zhou, Y. 2003The effect of soil texture and roots on the stable carbon isotope composition of soil organic carbonAust. J. Soil Sci.417794Google Scholar
  7. Blakemore, L.C., Searle, P.L., Daly, B.K. 1987Methods for Chemical Analysis of Soils. New Zealand Soil Bureau Scientific Report 80NZ Soil BureauDepartment of Scientific and Industrial ResearchLower Hutt, New ZealandGoogle Scholar
  8. Bol, R., Huang, Y., Meridith, J.A., Eglinton, G., Harkness, D.D., Ineson, P. 1996The 14C age and residence time of organic matter and its lipid constituents in a stagnohumic gley soilEur. J. Soil Sci.47215222CrossRefGoogle Scholar
  9. Bracewell, J.M., Campbell, A.S., Mitchell, B.D. 1970An assessment of some thermal and chemical techniques used in the study of the poorly-ordered aluminosilicates in soil claysClay Min.8325335Google Scholar
  10. Brunauer, S., Emmett, P.H., Teller, E. 1938Adsorption of gases in multimolecular layersJ. Am. Chem. Soc.60309319CrossRefGoogle Scholar
  11. Buurman, P. 1985Carbon/sesquioxide ratios in organic complexes and the transition albic-spodic horizonJ. Soil Sci.36255260Google Scholar
  12. Chefetz, B., Salloum, M.J., Deshmukh, A.P., Hatcher, P.G. 2002Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis-, and thermochemolysis-gas chromatography/mass spectrometrySoil Sci. Soc. Am. J.6611591171Google Scholar
  13. Chorover, J., Amistadi, M.K., Chadwick, O.A. 2004Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basaltGeochim. Cosmochim. Acta.6848594876CrossRefGoogle Scholar
  14. Cuypers, C., Grotenhuis, T., Nierop, K.G.J., Franco, E.M., de Jager, A., Rulkens, W. 2002Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matterChemosphere48919931CrossRefGoogle Scholar
  15. Dai, K.H., Johnson, C.E. 1999Applicability of solid-state C CP/MAS NMR analysis in Spodosols: chemical removal of magnetic materialsGeoderma93289310CrossRefGoogle Scholar
  16. Dignac, M.-F., Bahri, H., Rumpel, C., Basse, D.P., Bardoux, G., Balesdent, J., Girardin, C., Chenu, C., Mariotti, A. 2004Carbon 13-C abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France)Geoderma128317Google Scholar
  17. Eusterhues K., Rumpel C. and Kögel-Knabner I. 2005. Organo-mineral associations in sandy acid forest soils: importance of specific surface areairon oxides and micropores. Eur. J. Soil Sci. (in press).Google Scholar
  18. Eusterhues, K., Rumpel, C., Kleber, M., Kögel-Knabner, I. 2003Stabilization of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradationOrg. Geochem.3415911600CrossRefGoogle Scholar
  19. FAO 1994. Soil Map of the Worldrevised legendwith corrections and updates. World Soil Resources Report 60, FAO, Rome1988. Reprinted with updates as: Technical paper 20, ISRIC, Wageningen, Netherlands.Google Scholar
  20. Gonçalves, C.N., Dalmolin, R.S.D., Dick, D.P., Knicker, H., Klamt, E., Kögel-Knabner, I. 2003The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in FerralsolsGeoderma116373392CrossRefGoogle Scholar
  21. Guggenberger, G., Kaiser, K. 2003Dissolved organic matter in soils. Challenging the paradigm of sorptive preservationGeoderma113293310CrossRefGoogle Scholar
  22. Guignard, C., Lemée, L., Amblès, A. 2005Lipid constituents of peat humic acids and humin. Distinction from directly extractable bitumen components using TMAH and TEAAc thermo-chemolysisOrg. Geochem.36287297CrossRefGoogle Scholar
  23. Hanna, J.W., Johnson, W.D., Querada, R.A., Wilson, M.A., Xlao-Qlaot, L. 1991Characterization of aqueous humic substances before and after chlorinationEnviron. Sci. Techn.2510601064CrossRefGoogle Scholar
  24. Hu, W.G., Mao, J.D., Xing, B.S., Schmidt-Rohr, K. 2000Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonanceEnviron. Sci. Techn.34530534CrossRefGoogle Scholar
  25. Huang, Y., Li, B.C., Bryant, C., Bol, R., Eglinton, G. 1999Radiocarbon dating of aliphatic hydrocarbons: a new approach for dating passive-fraction carbon in soil horizonsSoil Sci. Soc. Am. J.6311811187Google Scholar
  26. Jandl, G., Leinweber, P., Schulten, H.-R., Eusterhues, K. 2004The concentrations of fatty acids in organo-mineral particle-size fractions of a ChernozemEur. J. Soil Sci.55459470CrossRefGoogle Scholar
  27. Jastrow, J.D., Boutton, T.W., Miller, R.M. 1996Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundanceSoil Sci. Soc. Am. J.60801807Google Scholar
  28. Jones, D.L., Edwards, A.C. 1998Influence of sorption on the biological utilization of two simple carbon substratesSoil Biol. Biochem.3018951902CrossRefGoogle Scholar
  29. Kaiser, K., Guggenberger, G. 2003Mineral surfaces and soil organic matterEur. J. Soil Sci.54118CrossRefGoogle Scholar
  30. Kaiser, K., Zech, W. 1996Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extractionSoil Sci.161452458CrossRefGoogle Scholar
  31. Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., Kögel-Knabner, I. 2002Stabilization of organic matter by soil minerals – investigations of density and particle-size fractions from two acid forest soilsJ. Plant Nutr. Soil Sci.165451459CrossRefGoogle Scholar
  32. Kalbitz, K., Schwesig, D., Rethemeyer, J., Matzner, E. 2005Stabilization of dissolved organic matter by sorption to the mineral soilSoil Biol. Biochem.3713191331CrossRefGoogle Scholar
  33. Karltun, E., Bain, D.C., Gustafsson, J.P., Mannerkoski, H., Murad, E., Wagner, U., Fraser, A.R., McHardy, W.J., Starr, M. 2000Surface reactivity of poorly-ordered minerals in podzol B horizonsGeoderma94265288CrossRefGoogle Scholar
  34. Karltun, E. 1998Modelling SO42− surface complexation on variable charge minerals: II. Competition between SO42− oxalate and fulvateEur. J. Soil Sci.49113120CrossRefGoogle Scholar
  35. Kiem, R., Kögel-Knabner, I. 2003Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soilsSoil Biol. Biochem.35101118CrossRefGoogle Scholar
  36. Kleber M., Mikutta R., Torn M.S. and Jahn R. 2005. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur. J. Soil Sci. (in press) doi:10.1111/j.1365-2389.2005.00706.x.Google Scholar
  37. Knicker, H., Lüdemann, H.-D. 1995N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradationOrg. Geochem.23329341Google Scholar
  38. Kögel-Knabner, I. 2002The macromolecular organic composition of plant and microbial residues as inputs of soil organic matterSoil Biol. Biochem.34139162CrossRefGoogle Scholar
  39. Krull, E.S., Skjemstad, J.O. 2003δ13C and δ15N profiles in 14C-dated oxisol and vertisols as a function of soil chemistry and mineralogyGeoderma112129CrossRefGoogle Scholar
  40. Krull, E.S., Baldock, J.A., Skjemstad, J.O. 2003Importance of mechanisms and processes of the stabilization of soil organic matter for modeling carbon turnoverFunct. Plant Biol.30207222CrossRefGoogle Scholar
  41. Leavitt, S.W., Follett, R.F., Paul, E.A. 1996Estimation of slow and fast-cycling soil organic carbon pools from 6 N HC1 hydrolysisRadiocarbon38231239Google Scholar
  42. Lebedev, A.T., Shaydullina, G.M., Sinikova, N.A., Harchevnikova, N.V. 2004GC–MS comparison of the behavior of chlorine and sodium hypochlorite towards organic compounds dissolved in waterWater Res.3837133718CrossRefGoogle Scholar
  43. Leinweber, P., Schulten, H.-R. 2000Nonhydrolyzable forms of soil organic nitrogen: extractability and compositionJ. Plant Nutr. Soil Sci.163433439CrossRefGoogle Scholar
  44. Lichtfouse, E. 1998Plant wax n-alkanes trapped in soil humin by non-covalent bondsNaturwiss.85449452Google Scholar
  45. Lichtfouse, E., Chenu, C., Baudin, F., Leblond, C., Da Silva, M., Behar, F., Derenne, S., Largeau, C., Wehrung, P., Albrecht, P. 1998A novel pathway of soil organic matter preservation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidenceOrg. Geochem.28411415CrossRefGoogle Scholar
  46. Lilienfein, J., Qualls, R.G., Uselman, S.M., Bridgham, S.D. 2004Adsorption of dissolved organic carbon and nitrogen in soils of a weathering chronosequenceSoil Sci. Soc. Am. J.68392405Google Scholar
  47. Loh, A.N., Bauer, J.E., Druffel, E.R.M. 2004Variable ageing and storage of dissolved organic components in the open oceanNature430877881CrossRefGoogle Scholar
  48. Lundsröm, U.S., Breemen, N., Bain, D.C., van Hees, P.A.W., Giesler, R., Gustaffson, J.P., Ilvesniemi, H., Karltun, E., Melkerud, P.-A., Olsson, M., Riise, G., Wahlberg, O., Bergelin, A., Bishop, K., Finlay, R., Jongmans, A.G., Magnusson, T., Mannerkoski, H., Nordgren, A., Nyberg, L., Starr, M., Tau Strand, L. 2000Advances in understanding the podzolization process resulting from a multidisciplinary study of three coniferous forest soils in the Nordic CountriesGeoderma94335353Google Scholar
  49. Mao, J.D., Hu, W.G., Schmidt-Rohr, K., Davies, G., Ghabbour, E.A., Xing, B. 2000Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonanceSoil Sci. Soc. Am. J.64873884Google Scholar
  50. Masiello C.A., Chadwick O.A., Southon J., Torn M.S. and Harden J.W. 2004. Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochem. Cycles 18 GB4023 10.1029/2004GB002219.Google Scholar
  51. Mikutta, R., Kleber, M., Kaiser, K., Jahn, R. 2005Review: organic matter removal from soils using hydrogen peroxidesodium hypochlorite and disodium peroxodisulfateSoil Sci. Soc. Am. J.69120136Google Scholar
  52. Mikutta, C., Lang, F., Kaupenjohann, M. 2004Soil organic matter clogs mineral pores: evidence from 1H-NMR and N2 adsorptionSoil Sci. Soc. Am. J.6818531862Google Scholar
  53. Miltner, A., Zech, W. 1998Beech leaf litter lignin degradation and transformation as infuenced by mineral phasesOrg. Geochem.28457463CrossRefGoogle Scholar
  54. Nierop, K.G.J. 1998Origin of aliphatic compounds in a forest soilOrg. Geochem.2910091016CrossRefGoogle Scholar
  55. Nip, M., Tegelaar, E.W., Brinkhuis, H., De Leeuw, J.W., Schenk, P.A., Holloway, P.J. 1986Analysis of modern and fossil plant cuticules by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new, highly aliphatic and resistant biopolymerOrg. Geochem.10769778CrossRefGoogle Scholar
  56. Oades, J.M. 1989

    An introduction to organic matter in mineral soils

    Dixon, J.B.Weed, S.B. eds. Minerals in Soil Environments2SSSA Book Series Nr. 1Madison, WI89160
    Google Scholar
  57. Omueti, J.A.I. 1980Sodium hypochlorite treatment for organic matter destruction in tropical soils of NigeriaSoil Sci. Soc. Am. J.44878880Google Scholar
  58. Onstad, G.D., Canfield, D.E., Quay, P.D., Hedges, J.I. 2000Sources of particulate organic matter in rivers from the continental USA: lignin phenol and stable isotope compositionGeochim. Cosmochim. Acta6435393546CrossRefGoogle Scholar
  59. Pai, C.-W., Wang, M.-K., Zhuang, S.-Y., King, H.-B. 2004Free and non-crystalline Fe-oxides to total iron concentration ratios correlated with 14C ages of three forest soils in Central TaiwanSoil Sci.169582589Google Scholar
  60. Parfitt, R.L., Childs, C.W. 1988Estimation of forms of Fe and Al: a review, and analysis of contrasting soils by dissolution and Mössbauer methodsAust. J. Soil Res.26121144CrossRefGoogle Scholar
  61. Paul, E.A., Collins, H.P., Leavitt, S.W. 2001Dynamics of resistant soil carbon of midwestern agricultural soils measured by naturally occurring C-14 abundanceGeoderma104239256CrossRefGoogle Scholar
  62. Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A., Lyon, D.J. 1997Radiocarbon dating for determination of soil organic matter pool sizes and dynamicsSoil Sci. Soc. Am. J.6110581067Google Scholar
  63. Poirier, N., Derenne, S., Balesdent, J., Mariotti, A., Massiot, D., Largeau, C. 2003Isolation and analysis of the non-hydrolysable fraction of a forest soil and an arable soil (Lacadéesouthwest France)Eur. J. Soil Sci.54243255CrossRefGoogle Scholar
  64. Rajan, P.S., Chen, C.-L., Gratzl, J.S. 1996Formation of chloro-organics during chlorine bleaching of softwood Kraft pulpHolzforschung50165174Google Scholar
  65. Riederer, M., Matzke, K., Ziegler, F., Kögel-Knabner, I. 1993Occurrence distribution and fate of the lipid plant bio-polymers cutin and suberin in temperate forest soilsOrg. Geochem.2010631076CrossRefGoogle Scholar
  66. Rutherford, D.W., Chiou, C.T., Eberl, D.D. 1997Effects of exchanged cation on the microporosity of montmorilloniteClays Clay Min.45534543Google Scholar
  67. Sarkanen, K.V., Ludwig, C.H. 1971LigninsJohn Wiley & SonsNew YorkGoogle Scholar
  68. Schmidt, M.W.I., Gleixner, G. 2005Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acidEur. J. Soil Sci.56407416CrossRefGoogle Scholar
  69. Schuppli, P.A., Ross, G.J., McKeague, J.A. 1983The effective removal of suspended materials from pyro-phosphate extracts of soils from tropical and temperate regionsSoil Sci. Soc. Am. J.4710261032Google Scholar
  70. Six, J., Bossuyt, H., Degryze, S., Denef, K. 2004A history of research on the link between (micro)aggregates, soil biotaand soil organic matter dynamicsSoil Till. Res.79731CrossRefGoogle Scholar
  71. Six, J., Conant, R.T., Paul, E.A., Paustian, K. 2002Stabilization mechanisms of soil organic matter: implications for C-saturation of soilsPlant Soil241155176CrossRefGoogle Scholar
  72. Sollins, P., Homann, P., Caldwell, B.A. 1996Stabilization and destabilization of soil organic matter: mechanisms and controlsGeoderma7465105CrossRefGoogle Scholar
  73. Springob, G., Kirchmann, H. 2002C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matterSoil Biol. Biochem.3415711581CrossRefGoogle Scholar
  74. Stuiver, M., Polach, H.A. 1977Reporting of 14C dataRadiocarbon19355363Google Scholar
  75. Tan, Z.X., Lal, R., Izaurralde, R.C., Post, W.M. 2004Biochemically protected soil organic carbon at the North Appalachian experimental watershedSoil Sci.196423433Google Scholar
  76. Tegelaar, E.W., Hollman, G., Vegt, P., Leeuw, J.W., Holloway, P.J. 1995Chemical characterization of the periderm tissue of some angiosperm species – recognition of an insolublenonhydrolyzablealiphatic biomacro-molecule (suberan)Org. Geochem.23239251CrossRefGoogle Scholar
  77. Theng, B.K.G., Tate, K.R., Becker-Heidmann, P. 1992Towards establishing the agelocation, and identity of the inert soil organic matter of a spodosolZ. Pflanzenernähr. Bodenkd.155181184Google Scholar
  78. Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M. 1997Mineral control of soil organic carbon storage and turn-overNature389170173CrossRefGoogle Scholar
  79. Hees, P.A.W., Vinogradoff, S.I., Edwards, A.C., Godbold, D.L., Jones, D.L. 2003Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation ratesSoil Biol. Biochem.3510151026Google Scholar
  80. Westerhoff, P., Chao, P., Mash, H. 2004Reactivity of natural organic matter with aqueous chlorine and bromineWater Res.3815021513CrossRefGoogle Scholar
  81. Westerhoff, P., Aiken, G., Amie, G., Debroux, J. 1999Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicalsWater Res.3322652276CrossRefGoogle Scholar
  82. Wiseman, C.L.S., Püttmann, W. 2005Soil organic carbon and its sorptive preservation in central GermanyEur. J. Soil Sci.566576CrossRefGoogle Scholar
  83. Zimmerman, A.R., Chorover, J., Goyne, K.W., Brantley, S.L. 2004Protection of mesopore-adsorbed organic matter from enzymatic degradationEnviron. Sci. Techn.3845424548Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Robert Mikutta
    • 1
  • Markus Kleber
    • 2
  • Margaret S. Torn
    • 2
  • Reinhold Jahn
    • 1
  1. 1.Institut für Bodenkunde und PflanzenernährungMartin-Luther-Universität Halle-WittenbergHalleGermany
  2. 2.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations