Biogeochemistry

, Volume 73, Issue 1, pp 209–230 | Cite as

Calibration and validation of an empirical approach to model soil CO2 efflux in a deciduous forest

Article

Abstract.

Soil respiration (Rs) was monitored periodically throughout 2001 and 2003 in a pedunculate oak (Quercus robur L.) stand located in the Belgian Campine region. An empirical model originally developed for a neighboring pine stand, that accounts for variation in temperature, soil moisture, rewetting of the surface layers by rain during dry periods and seasonal fresh litter inputs, was fitted to the data. The model explained 92% and 94% of the temporal variability in Rs during 2001 and 2003 respectively. Monthly measurements of Rs can suffice to build a robust empirical model if temperature is the main controlling factor. However, during the driest period of the year a weekly sampling schedule was needed to capture the combined effect of temperature, soil water content (SWC) and the short-term effect of rewetting played. Although the model was developed for gap-filling purposes it also showed a remarkable predictive ability for this site and these conditions. Annual emissions of carbon (C) estimated with the model were significantly higher in 2001 than in 2003 (7.8 and 5.9 ton C ha−1 year−1, respectively). The severe drought during most of the growing season in 2003 caused a high fine root mortality and a decrease in microbial activity, and was likely the main responsible factor of the almost 2 ton C ha−1 year−1 differences in Rs between both years. Pulses of Rs during drying/rewetting cycles accounted for a substantial fraction of the total flux, especially during the driest year. Finally, our results show that quality of the substrate may play an important role in both the intensity of the rewetting pulses of CO2 and the seasonality of Rs.

Keywords

Drought effect Empirical model Fresh litter seasonality effect Hysteresis Pedunculate oak Q10 Rewetting effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adu, J., Oades, J. 1978Physical factors influencing decomposition of organic materials in soil aggregatesSoil Biol. Biochem.10109115CrossRefGoogle Scholar
  2. Anderson, J.M. 1973Carbon dioxide evolution from two temperate deciduous woodland soilsJ. Appl. Ecol.10361378Google Scholar
  3. Appel, T. 1998Non-biomass soil organic N: the substrate for N mineralization flushes following soil drying–rewetting and for organic N rendered CaCl2-extractable upon soil dryingSoil Biol. Biochem.39505510Google Scholar
  4. Baeyens L., Van Slycken J. and Stevens D. 1993. Institute for Forestry and Game ManagementGeraardsbergen, Belgium17 pp.Google Scholar
  5. Birch, H. 1958The effect of soil drying on humus decomposition and nitrogen availabilityPlant Soil10931CrossRefGoogle Scholar
  6. Birch, H. 1960Nitrification of soil after different periods of drynessPlant Soil128196CrossRefGoogle Scholar
  7. Borken, W., Xu, Y.-J., Brumme, R., Lamersdorf, N. 1999A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effectsSoil Sci. Soc. Am. J.6318481855Google Scholar
  8. Campbell, J.L., Sun, O.J., Law, B.E. 2004Supply-side controls on soil respiration among Oregon forestGlobal Change Biol.1018571869CrossRefGoogle Scholar
  9. Coley, P., Bryant, J.P., Chapin, F.S.,III. 1985Resource availability and plant antiherbivore defensesScience230895899Google Scholar
  10. Curiel Yuste, J., Janssens, I.A., Carrara, A., Ceulemans, R. 2004Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivityGlobal Change Biol.10161169CrossRefGoogle Scholar
  11. Curiel Yuste J., Janssens I.A., Carrara A. and Ceulemans R. in press. Temporal and spatial variability in the contribution of soil respiration to total ecosystem respiration in a mixed temperate forest. Tree Physiol.Google Scholar
  12. Curiel Yuste, J., Janssens, I.A., Carrara, A., Meiresonne, L., Ceulemans, R. 2003Interactive effect of temperature and precipitation on soil respiration in a temperate maritime pine forestTree Physiol.2312631270PubMedGoogle Scholar
  13. Davidson, E.A., Belk, E., Boone, R.D. 1998Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forestGlob. Change Biol.4217227CrossRefGoogle Scholar
  14. Davidson, E.A., Trumbore, S.E., Amundson, R. 2000bSoil warming and organic carbon contentNature408789790CrossRefGoogle Scholar
  15. Davidson, E.A., Verchot, L.V., Cattanio, J.H., Ackerman, I.L., Carvalho, J.E.M. 2000aEffects of soil water content on soil respiration in forest and cattle pastures of eastern AmazoniaBiogeochemistry485369CrossRefGoogle Scholar
  16. De Clerk J. 2004. Vergelijkende studie van de seizoenale dynamiek van bladeren en wortels inzomereik en grove den. University of Antwerp, Masters thesis (in dutch).Google Scholar
  17. Dixon, R.K., Brown, S., Houghton, R.A., Soloman, A.M., Trexler, M.C., Wisniewski, J. 1994Carbon pools and flux of global forest ecosystemsScience263185190Google Scholar
  18. Epron, D., Farque, L., Lucot, E., Badot, P.-M. 1999Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water contentAnn. Forest Sci.56221226Google Scholar
  19. Fairley R.I. and Alexander I.J. 1985. Methods of calculating fine root production in forests. In: Fitter A.H. (ed.), Ecological Interactions in Soil, Vol. 4. Special Publication of the British Ecological Society, pp. 37–42.Google Scholar
  20. Giardina, C.P., Ryan, M.G. 2000Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperatureNature404858861Google Scholar
  21. Heal, O.W., Flanagan, P.W., French, D.D.,Jr., Maclean, S.F.,  et al. 1981

    Decomposition and accumulation of organic matter in tundra

    Bliss, L.C. eds. Tundra Ecosystems: A Comparative AnalysisCambrigde University PressCambrigde587633
    Google Scholar
  22. Hobbie, S.E. 1996Temperature and plant species control over litter decomposition in Alaskan tundraEcol. Monogr.66503522Google Scholar
  23. Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Akblad, A., Hogberg, M.N., Nyberg, G., Ottosson-Lofvenius, M., Read, D.J. 2001Large-scale forest girdling shows that current photosynthesis drives soil respirationNature411789792Google Scholar
  24. IPCC et al. 2001Houghton, H.J. eds. Climate Change 2001: The Scientific Basis. Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeCambrigde University PressCambrigdeUKGoogle Scholar
  25. Janssens, I.A., Dore, S., Epron, D., Lankreijer, H., Buchmann, N., Longdoz, B., Brossaud, J., Montagnani, L. 2003

    Climatic influences on seasonal and spatial differences in soil CO2 efflux

    Valentini, R. eds. Fluxes of Carbon water and Energy of European ForestSpringer-VerlagBerlin233253
    Google Scholar
  26. Janssens, I.A., Kowalski, A.S., Longdoz, B., Ceulemans, R. 2000aAssessing forest soil CO2 efflux: an in situ comparison of four techniquesTree Physiol.202332Google Scholar
  27. Janssens, I.A., Kowalski, A.S., Ceulemans, R. 2001aForest floor CO2 fluxes estimated by eddy covariance and chamber-based modelAgr. Forest Meteorol.1066169CrossRefGoogle Scholar
  28. Janssens, I.A., Lankreijer, H., Matteucci, G., Kowalski, A.S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grünwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E.J., Grelle, A., Rannik, Ü., Morgenstern, K., Clement, R., Oltchev, S., Gumundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N.O., Vesala, T., Granier, A., Schulze, E.-D., Lindroth, A., Dolman, A.J., Jarvis, P.G., Ceulemans, R., Valentini, R. 2001bProductivity overshadows temperature in determining soil and ecosystem respiration across European forestsGlobal Change Biol.7269278CrossRefGoogle Scholar
  29. Janssens, I.A., Meiresonne, L., Ceulemans, R. 2000b

    Mean soil CO2 efflux from a mixed forest: temporal and spatial integration

    Ceulemans, R.Veroustraete, F.Gond, V.Van Rensbergen, J. eds. Forest Ecosystem Modeling, Upscaling and Remote SensingSPB Academic PublishingThe Hague1933
    Google Scholar
  30. Janssens, I.A., Sampson, D.A., Cermak, J., Meiresonne, L., Riguzzi, F., Overloop, S., Ceulemans, R. 1999Above- and below-ground phytomass and carbon storage in a Belgian Scots pine standAnn. Forest Sci.568190Google Scholar
  31. Kelliher, F.M., Lloyd, J., Arneth, A., Lühker, B., Byers, J.N., McSeveny, T.M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlargin, A., Ziegler, W., Bauer, G., Wong, S.-C., Schulze, E.-D. 1999Carbon dioxide efflux density from the floor of a central Siberian pine forestAgr. Forest Meteorol.94217232CrossRefGoogle Scholar
  32. Kieft, T.L., Rindelberg, D.B., White, D.C. 1994Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous mediumAppl. Environ. Microbiol.6032923299Google Scholar
  33. Konôpka B., Curiel Yuste J., Janssens I.A. and Ceulemans R. in press. Comparison of fine root dynamics in Scots pine and pedunculate oak in sandy soil. Plant Soil.Google Scholar
  34. Kowalski, A.S., Overloop, S., Ceulemans, R. 2000

    Eddy fluxes above a Belgian, Campine forest and their relationship with predicting variables

    Ceulemans, R.Veroustraete, F.Gond, V.Van Rensbergen, J. eds. Forest Ecosystem Modeling, Upscaling and Remote SensingSPB Academic PublishingThe Hague317
    Google Scholar
  35. Lankreijer, H., Janssens, I.A., Buchmann, N. 2003

    Measurement of soil respiration within the EUROFLUX project

    Valentini, R. eds. Canopy Fluxes of Energy, Water and Carbon Dioxide of European ForestsSpringer-VerlagBerlin
    Google Scholar
  36. Lee, M.-S., Nakane, K., Nakatsubo, T., Mo, W.-H., Koizumi, H. 2002Effects of rainfall events on soil CO2 flux in a cool temperature deciduous broad-leaved forestEcol. Res.17401409CrossRefGoogle Scholar
  37. Lundquist, E., Jackson, L., Scow, K. 1999Rapid response of soil microbial communities from conventional, low inputand organic farming systems to a wet/dry cycleSoil Biol. Biochem.3116611675CrossRefGoogle Scholar
  38. Mamilov, A.S., Oliver, M.D. 2002Soil microbial eco-physiology as affected by short-term variations in environmental conditionsSoil Biol. Biochem.3412831290CrossRefGoogle Scholar
  39. Meiresonne, L., Overloop, S. 1999Transpiratiebegroting van een Grove dennenbestand: eerste modelmatige benaderingComm. Inst. For. Game Manage.Belgium103119No. 1999/1Google Scholar
  40. Meiresonne, L., Sampson, D.A., Kowalski, A.S., Janssens, I.A., Nadezhdina, N., Cermak, J., Ceulemans, R. 2002Resolving time scale dependence of water flux estimates from a Belgian Scots pine stand: sap flow, eddy covarianceand process simulationsJ. Hydrol.270230252CrossRefGoogle Scholar
  41. Monk, C.D. 1966An ecological significance of evergreennessEcology47504505Google Scholar
  42. Orchard, V., Cook, F. 1983Relationship between soil respiration and soil-moistureSoil Biol. Biochem.15447453CrossRefGoogle Scholar
  43. Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. 1987Analysis of factors controlling soil organic matter levels in great plains grasslandsSoil Sci. Soc. Am. J.5111731179Google Scholar
  44. Pregitzer, K.S., King, J.S., Burton, A.J., Brown, S.E. 2000Responses of tree fine roots to temperatureNew Phytol.147105115CrossRefGoogle Scholar
  45. Pumpanen, J., Kolari, P., Ilvesniemi, H., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I.A., Curiel Yuste, J., Gruenzweig, J., Reth, S., Subke, J.-A., Savage, K., Kutsch, W.L., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A., Hari, P. 2004Calibration of different chamber techniques for measuring soil CO2 effluxAgric. Forest Meteorol.123159176CrossRefGoogle Scholar
  46. Raich, J.W., Schlesinger, W.H. 1992The global carbon dioxide flux in soil respiration and its relationship to vegetation and climateTellus44B8199Google Scholar
  47. Rey, A., Pegoraro, E., Tedeschi, V., De Parri, I., Jarvis, P.G., Valentini, R. 2002Annual variation in soil respiration and its components in a coppice oak forest in Central ItalyGlobal Change Biol.8851866CrossRefGoogle Scholar
  48. Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., Townsend, A.R. 1994Climatic, edaphic, and biotic controls over storage and turnover of carbon in soilsGlobal Biogeochem. Cycles8279293CrossRefGoogle Scholar
  49. Schlesinger, W.H. 1977Carbon balance in terrestrial detritusAnn. Rev. Ecol. Syst.85181CrossRefGoogle Scholar
  50. Schlesinger, W., Andrews, J. 2000Soil respiration and the global carbon cycleBiogeochemistry48720CrossRefGoogle Scholar
  51. Stanners, D., Bourdeau, P. 1995Europe’s EnvironmentEuropean Environmental AgencyCopenhagenGoogle Scholar
  52. Trumbore, S.E., Bonani, G., Wölfli, W. 1990

    The rates of carbon cycling in several soils from AMS 14C measurements of fractionated soil organic matter

    Bouwman, A.F. eds. Soils and the Greenhouse EffectJohn Wiley & Sons, Inc.New York405414
    Google Scholar
  53. Van Cleve, K.,  et al. 1974

    Organic matter quality in relation to decomposition

    Holding, A.J. eds. Soil Organism and Decomposition in TundraTundra Biome Steering CommitteeStockholm311324
    Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Biology, Research Group of Plant and Vegetation EcologyUniversity of Antwerp (UA)WilrijkBelgium
  2. 2.Department of Environmental Science Policy and Management and Berkeley Atmospheric Science Center, Ecosystems Science DivisionUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations