Advertisement

Biogeochemistry

, Volume 75, Issue 2, pp 177–200 | Cite as

Size Distribution and Amino Acid Chemistry of Base-extractable Proteins from Washington Coast Sediments

  • Brook L. Nunn
  • Richard G. Keil
Article

Abstract

Proteinaceous components from four Washington coast margin sediments were extracted with base, fractionated into one of four size classes (<3 kDa, 3–10 kDa, 10–100 kDa, >100 kDa), and analyzed for their amino acid contents. Base-extracted material accounts for ~30% of the total hydrolyzable amino acids (THAA) and each size fraction has a unique composition, regardless of where the sediment was collected (shelf or upper slope). The <3 kDa size fraction (~10% of base-extractable THAA) is relatively enriched in glycine (~30 mol%), lysine (~5 mol%), and non-protein amino acids (~5 mol%). Glycine and non-protein amino acids are common degradation products, and lysine is very surface active. We suggest that the <3 kDa size fraction, therefore, represents a diagenetic mixture of fragments produced during the degradation of larger proteins. The 3–10 and 10–100 kDa size fractions (~10% and 42% of base-extractable THAA, respectively) have similar amino acid distributions dominated by aspartic acid (~30 mol%). Enrichments in Asp is likely due to both preservation of Asp-rich proteins and the production of Asp during degradation. The >100 kDa size fraction (~38% of base-extractable THAA) is not dominated by any particular amino acid and can not be modeled by mixing the amino acid compositions of the other size fractions. We propose that the larger size fractions (10–100 kDa and >100 kDa) represent intact, or near intact, proteins. Estimates of isoelectric points and relative hydrophobicity suggest the base-extractable proteins are primarily acidic and have globular structures. Statistical comparisons to several known proteins indicates that the base-extractable component is most similar to planktonic cytoplasmic proteins.

Keywords

Amino acids Diagenesis Isoelectric point Protein Marine sediment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, M.I., Clayton, D.J., Holt, P., Kronina, V., Boysen, R.I., Purcell, A.W., Hearn, M.T.W. 1998RP-HPLC binding domains of proteinsAnal. Chem.7050105018CrossRefPubMedGoogle Scholar
  2. Amon, R.M.W., Benner, R. 1996Bacterial utilization of different size classes of dissolved organic matterLimnol. Oceanogr.414151Google Scholar
  3. Arnarson, T.S., Keil, R.G. 2000Mechanisms of pore water organic matter adsorption to montmorilloniteMar. Chem.71309320CrossRefGoogle Scholar
  4. Aufdenkampe, A.K., Hedges, J.H., Krusche, A.V., Llerena, C., Richey, J.E. 2001Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon BasinLimnol. Oceanogr.4619211935Google Scholar
  5. Beavis R.C. and Fenyo D 2003. http://prowl.rockefeller.edu/aainfo/struct.htm. Eli Lilly & Company, The Rockefeller University.Google Scholar
  6. Benner, R., Pakulski, J.D., McCarthy, M., Hedges, J.I., Hatcher, P.G. 1992Bulk chemical characteristics of dissolved organic matter in the oceanScience25515611564Google Scholar
  7. Berner, R.A. 1982Burial of organic carbon and pyrite sulphur in the modern ocean: its geochemical and environmental significanceAm. J. Sci.282451473Google Scholar
  8. Bjellqvist, B., Hughes, G.J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J.C., Frutiger, S., Hochstrasser, D.F. 1993The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequencesElectrophoresis1410231031CrossRefPubMedGoogle Scholar
  9. Burdige, D.J., Martens, C.S. 1988Biogeochemical cycling in an organic-rich coastal marine basin: the role of amino acids in sedimentary carbon and nitrogen cyclingGeochimica Cosmochimica Acta5215711584CrossRefGoogle Scholar
  10. Carpenter, R., Peterson, M.L., Bennett, J.T. 1982210Pb-derived sediment accumulation and mixing rates for the Washington continental slopeMar. Geol.48135164CrossRefGoogle Scholar
  11. Carter, P.W. 1978Adsorption of amino acid-containing organic matter by calcite and quartzGeochemica et cosmochimica Acta4212391242CrossRefGoogle Scholar
  12. Carter, P.W., Mitterer, R.M. 1978Amino acid composition of organic matter associated with carbonate and non-carbonate sedimentsGeochimica et Cosmochimica Acta4212311238CrossRefGoogle Scholar
  13. Chen, J., Chen, R., Wiesner, M.G., Zheng, L., Tang, Y. 2000Amino acids, amino sugars and carbohydrates in settling planktonic tests and their implications for the South China SeaOceanologia et Limnologia Sinica31596603Google Scholar
  14. Chin, W.C., Orellana, M.V., Verdugo, P. 1998Spontaneous assembly of marine dissolved organic matter into polymer gelsNature391568571CrossRefGoogle Scholar
  15. Collins, M.J., Westbroek, P., Muyzer, G., de Leeuw, J.W. 1992Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletonsGeochimica et Cosmochimica Acta5615391544CrossRefGoogle Scholar
  16. Cowie, G.L., Hedges, J.I. 1992aImproved amino acid quantification in environmental samples: charge-matched recovery standards and reduced analysis timeMar. Chem.37223238CrossRefGoogle Scholar
  17. Cowie, G.L., Hedges, J.I. 1992bSources and reactivities of amino acids in a coastal marine environmentLimnol. Oceanogr.37703724Google Scholar
  18. Dauwe, B., Middelburg, J.J. 1998Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sedimentsLimnol. Oceanogr.43782798Google Scholar
  19. Dauwe, B., Middelburg, J.J., Herman, P.M.J., Heip, C.H.R. 1999aLinking diagenetic alteration of amino acids and bulk organic matter reactivityLimnol. Oceanogr.4418091814Google Scholar
  20. Dauwe, B., Middelburg, J.J., Van-Rijswijk, P., Sinke, J., Herman, P.M.J., Heip, C.H.R. 1999bEnzymatically hydrolyzable amino acids in North Sea sediments and their possible implication for sediment nutritional valuesJ. Mar. Res.57109134CrossRefGoogle Scholar
  21. Ding, X., Henrichs, S.M. 2002Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sedimentsMar. Chem.77225237CrossRefGoogle Scholar
  22. Hamm, C.E. 2002Interactive aggregation and sedimentation of diatoms and clay-sized lithogenic materialLimnol. Oceanogr.4717901795Google Scholar
  23. Hedges, J., Baldok, J., Gelinas, Y., Lee, C., Peterson, M., Wakeham, S. 2001aThe biochemical and elemental compositions of marine plankton: a NMR perspectiveMar. Chem.784763CrossRefGoogle Scholar
  24. Hedges, J.I., Baldock, J.A., Gelinas, Y., Lee, C., Peterson, M., Wakeham, S.G. 2001bEvidence for non-selective preservation of organic matter in sinking marine particlesNature409801804CrossRefGoogle Scholar
  25. Hedges, J., Hu, F.S., Devol, A.H., Hartnett, H.E., Tsamakis, E., Keil, R.G. 1999Sedimentary Organic matter preservation: a test for selective degredation under oxic conditionsAm. J. Sci.299529555Google Scholar
  26. Hedges, J.I., Keil, R.G. 1995Sedimentary organic matter preservation: an assessment and speculative synthesisMar. Chem.4981115CrossRefGoogle Scholar
  27. Hedges, J.I., Stern, J. 1984Carbon and nitrogen determinations of carbonate-containing solidsLimnol. Oceanogr.29657663Google Scholar
  28. Henrichs, S.M. 1992Early diagenesis of organic matter in marine sediments: progress and perplexityMar. Chem.39119149CrossRefGoogle Scholar
  29. Henrichs, S.M., Farrington, J. 1987Early diagenesis of amino acids and organic matter in two coastal marine sedimentsGeochimica et Cosmochimica Acta51115CrossRefGoogle Scholar
  30. Henrichs, S.M., Sugai, S.F. 1993Adsorption of amino acids and glucose by sediments of Resurrection Bay, AlaskaUSA: functional group effectsGeochimica et Cosmochimica Acta57823835CrossRefGoogle Scholar
  31. Hollibaugh, J.T., Azam, F. 1983Microbial degradation of dissolved proteins in seawaterLimnol. Oceanogr.2811041116Google Scholar
  32. Ingalls, A.E., Lee, C., Wakeham, S.G., Hedges, J.I. 2003The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170°WDeep-Sea Res. II50713738CrossRefGoogle Scholar
  33. Janin, J. 1979Surface and inside volumes in globular proteinsNature277491492CrossRefPubMedGoogle Scholar
  34. Kaufmann, M. 1997Unstable proteins: how to subject them to chromatographic separations for purification proceduresJ. Chromatogr.B 699347369Google Scholar
  35. Keil, R.G., Fogel, M. 2001Reworking of amino acids in marine sediments: stable carbon isotopic composition of amino acids along the Washington coastLimonol. Oceanogr.46 1423Google Scholar
  36. Keil, R.G., Kirchman, D.L. 1994Abiotic transformation of labile protein to refractory protein in sea waterMar. Chem.45187196CrossRefGoogle Scholar
  37. Keil, R.G., Montluçon, D.B., Prahl, F.G., Hedges, J.I. 1994Sorptive preservation of labile organic matter in marine sedimentsNature370549551CrossRefGoogle Scholar
  38. Keil, R.G., Tsamakis, E., Giddings, J.C., Hedges, J.I. 1998Biochemical distributions among size-classes of modern marine sedimentsGeochimica et Cosmochimica Acta6213471364CrossRefGoogle Scholar
  39. Keil, R.G., Tsamakis, E., Hedges, J.I. 2000Amino Acid and Protein GeochemistryOxford University PressNew York6982Google Scholar
  40. King, K.J. 1974Preserved amino acids from silicified protein in fossil RadiolariaNature252 690692CrossRefGoogle Scholar
  41. Knicker, H. 2000Solid-state 2-D double cross polarization magic angle spinning 15N 13C NMR spectroscopy on degraded algal residuesOrg. Geochem.31337340CrossRefGoogle Scholar
  42. Knicker, H., Hatcher, P.G. 1997Survival of protein in an organic-rich sediment: possible protection by encapsulation in organic matterNaturewissenschaften84231234CrossRefGoogle Scholar
  43. Lee, C., Cronin, C. 1982The vertical flux of particulate nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equitorial PacificJ. Mar. Res.40227251Google Scholar
  44. Li, Y.H. 2000A Compendium of GeochemistryPrinceton University PressNew YorkGoogle Scholar
  45. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J. 2000Molecular Cell BiologyFreeman and CompanyNewYork1083. Media ConnectedGoogle Scholar
  46. Mayer, L.M. 1994Surface area control of organic carbon accumulation in continental shelf sedimentsGeochimica et Cosmochimica Acta5812711284CrossRefGoogle Scholar
  47. McCarthy, M. 1998Bacterial origin of a major fraction of marine dissolved organic nitrogenUniversity of WashingtonSeattleGoogle Scholar
  48. McCarthy, M.D., Hedges, J.I., Benner, R. 1998Major bacterial contribution to marine dissolved organic nitrogenScience281231234CrossRefPubMedGoogle Scholar
  49. Nguyen, R.T., Harvey, H.R. 1997Protein and amino acid cycling during phytoplankton decomposition in oxic and anoxic watersOrg. Geochem.27115128CrossRefGoogle Scholar
  50. Nguyen R.T. and Harvey H.R. 1999. Protein preservation during early diagenesis in marine waters and sediments. In: Nitrogen-containing macromolecules in the bio- and geo-sphere. Oxford University Press, New York, pp. 34–47.Google Scholar
  51. Nguyen, R.T., Harvey, H.R. 2001Preservation of protein in marine systems: hydrophobic and other noncovalent associations as major stabilizing forcesGeochimica et Cosmochimica Acta6514601480CrossRefGoogle Scholar
  52. Nittrouer, C.A. 1978Detrital Sediment Accumulation in a Continental Shelf Environment: An Examination of the Washington ShelfUniversity of WashingtonSeattleGoogle Scholar
  53. Nittrouer, C.A., DeMaster, D.J., McKee, B.A., Cutshall, N.H., Larsen, I.L. 1983The effect of sediment mixing on Pb-210 accumulation rates for the Washington continental shelfMar. Geol.54201221CrossRefGoogle Scholar
  54. Nittrouer, C.A., Sternberg, R.W. 1981The formation of sedimentary strata in an allochthonous shelf environment: The Washington continental shelfMar. Geol.42201232CrossRefGoogle Scholar
  55. Nunn, B.L. 2004Moving beyond Amino Acids: Examinations of the Protein Component in Marine SedimentsUniversity of WashingtonSeattleGoogle Scholar
  56. Nunn, B.L., Norbeck, A., Keil, R.G. 2003Hydrolysis patterns and the production of peptide intermediates during protein degradation in marine systemsMar. Chem.835973CrossRefGoogle Scholar
  57. Ostrom, P.H., Schall, M., Gandhi, H., Shen, T.L., Hauschka, P.V., Strahler, J.R., Gage, D.A. 2000New strategies for characterizing ancient proteins using matrix assisted laser desorption ionization mass spectrometryGeochimica et Cosmochimica Acta6410431050CrossRefGoogle Scholar
  58. Pantoja, S. 1997Reactivity of proteins, peptides and amino acids in the marine environment: effects of molecular size and structure on degradationStony BrookNew YorkGoogle Scholar
  59. Pantoja, S., Lee, C. 1999Molecular weight distribution of proteinaceous material in Long Island sound sedimentsLimnol. Oceanogr.4413231330Google Scholar
  60. Ridge, M.J.H., Carson, B. 1987Sediment transport on the Washington continental shelf: estimates of disperal rates from Mount St. Helens ashContinental Shelf Res.7759772CrossRefGoogle Scholar
  61. Robbins, L.L., Brew, K. 1990Proteins from the organic matrix of core-top and fossil planktonic foraminiferaGeochemica et cosmochimica Acta5422852292CrossRefGoogle Scholar
  62. Rose G., Geselowitz A., Lesser G., Lee R. and Zehfus M. 1985. Hydrophobicity of amino acid residues in globular proteins. Science 834–838.Google Scholar
  63. Satterberg, J., Arnarson, T.S., Lessard, E.J., Keil, R.G. 2003Sorption of organic matter from four phytoplankton species to montmorillonitechlorite and kaolinite in seawaterMar. Chem.811118CrossRefGoogle Scholar
  64. Schaller, J., Pellascio, B.C., Schlunegger, U.P. 1997Analysis of hydrophobic proteins and peptides by electrospray ionization mass spectrometryRapid Commun. Mass Spectrom.11417426CrossRefGoogle Scholar
  65. Schuster, S., Arrieta, J.M., Herndl, G.J. 1998Adsorption of dissolved free amino acids on colloidal DOM enhances colloidal DOM utilization but reduces amino acid uptake by orders of magnitude in marine bacterioplanktonMar. Ecol. Progress Series16699108Google Scholar
  66. Schwartz, R., Ting, C.S., King, J. 2001Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of lifeGenome Res.11703709CrossRefPubMedGoogle Scholar
  67. Sillero, A., Ribeiro, J.M. 1998Isoelectric points of proteins: theoretical determinationAnal. Biochem.179319325CrossRefGoogle Scholar
  68. Sternberg, R.W. 1986Transport and accumulation of river-derived sediment on the Washington continental shelf, USAJ. Geol. Soc. Lon.143945956Google Scholar
  69. Sugai, S.F., Henrichs, S.M. 1992Rates of amino acid uptake and mineralization in Resurrection Bay (Alaska) sedimentsMar. Ecol. Progress Series88129141Google Scholar
  70. Sykes, G., Collins, M.J., Walton, D.I. 1995The significance of a geochemically isolated intracrystalline organic fraction within biomineralsOrg. Geochem.1110591065CrossRefGoogle Scholar
  71. Tanoue, E. 1996Characterization of the particulate protein in Pacific surface watersJ. Mar. Res.54967990CrossRefGoogle Scholar
  72. Tanoue, E., Nishiyama, S., Kamo, M., Tsugita, A. 1995Bacterial membranes: possible source of a major dissolved protein in seawaterGeochimica et Cosmochimica Acta5926432648CrossRefGoogle Scholar
  73. Van Bogelen, R.A., Schiller, E.E., Thomas, J.D., Neidhardt, F.C. 1999Diagnosis of cellular states of microbial organisms using proteomicsElectrophoresis2021492159CrossRefPubMedGoogle Scholar
  74. Mooy, B.A.S., Keil, R.G. 2002Seasonal variation in sedimentary amino acids and the association of organic matter with mineral surfaces in a sandy eelgrass meadowMar. Ecol. Progress Series227275280Google Scholar
  75. Mooy, B.A.S., Keil, R.G., Devol, A.H. 2002Impact of suboxia on sinking particulate organic carbon: enhanced carbon flux and preferential degradaion of aminio acids via denitrificationsGeochimica et Cosmochimica Acta66457465CrossRefGoogle Scholar
  76. Voet, D., Voet, J. 1990BiochemistryJohn Wiley & SonsNew YorkGoogle Scholar
  77. White, S.M. 1970Mineralogy and geochemistry of continental shelf sediments off the Washington-Oregon CoastJ. Sedimentary Petrology403854Google Scholar
  78. Whitelegge, J.P., Gunderson, C.B., Faull, K.F. 1998Electrospray-ionization mass spectrometry of intact intrinsic membrane proteinsProtein Sci.714231430PubMedGoogle Scholar
  79. Wilkins M.R., Gasteiger E., Bairoch A., Sanchez J.C., Williams K.L., Appel R.D. and Hochstrasser D.F. 1998. Protein Identification and Analysis Tools in the ExPASy Server. In: 2-D Proteome Analysis Protocols. Humana Press, New Jersey.Google Scholar
  80. Williams, S.K.R, Keil, R.G. 1997Monitoring the biological and physical reactivity of dextran carbohydrates in seawater incubations using flow field-flow fractionationJ. Liquid Chromatogr. Related Technol.2028152833Google Scholar
  81. Yamada, N., Tanoue, E. 2003Detection and partial characterization of dissolved glycoproteins in oceanic watersLimnol. Oceanogr.4810371048Google Scholar
  82. Zang, X., Jasper, D.H., Dria, K.J., Hatcher, P.G. 2000Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sedimentOrg. Geochem.31679695CrossRefGoogle Scholar
  83. Zang, X., Nguyen, R.T., Harvey, H.R., Knicker, H., Hatcher, P.G. 2001Preservation of proteinaceous material during the degradation of the green alga Botryococcus braunii: a solid-state 2D 15N 13C NMR spectroscopy studyGeochimica et Cosmochimica Acta6532993305CrossRefGoogle Scholar
  84. Zimmerman, A.R., Goyne, K.W., Chorover, J., Komarneni, S., Brantley, S.L. 2004Mineral mesopore effects on nitrogenous organic matter adsorptionOrg. Geochem.35355375CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.School of OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations