Advertisement

Biogeochemistry

, Volume 74, Issue 1, pp 115–130 | Cite as

Terrestrial vegetation and the seasonal cycleof dissolved silica in a southern New Englandcoastal river

  • Robinson W. Fulweiler
  • Scott W. Nixon
Article

Abstract

The Pawcatuck river watershed (797 km2) is located in southern Rhode Island and northeastern Connecticut. The predominant lithology of the area is granite, and over 60% of the watershed remains forested with mixed hardwoods (primarily oak) and eastern white pine. As part of a larger study of nutrient and sediment exports from the watershed to Little Narragansett Bay, we measured dissolved silica (SiO2) (DSi) concentrations at the river mouth over 70 times between January 14, 2002 and November 29, 2002. Annual export of DSi during our study was 40 × 106 mol or 50 kmol  km−2. The United States Geological Survey (USGS) obtained DSi concentrations at this site, at varying frequencies, from 1978 to the present, which allowed for a historical comparison of this study with previous years. River DSi concentrations exhibited a strong seasonal signal that did not vary in a regular way with water discharge or water temperature. DSi and dissolved inorganic nitrogen (DIN) concentrations were significantly related over the annual cycle (p<0.0001) and both decreased substantially during the spring. Dissolved inorganic phosphorus (DIP) did not covary at any time with silica or nitrogen, suggesting that in-stream biological uptake was not responsible for the seasonal decline in silica. The spring decline in river silica concentrations may be due to silica uptake by terrestrial vegetation. We estimate a net forest silica accretion rate of 41 kmol  km−2 y−1, a value that is stoichiometrically consistent with other measurements of net carbon accretion in nearby forests.

Keywords

Little Narragansett Bay dissolved silica river fluxes seasonal cycles watershed export, forest uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Admiraal, W., Zanten, B., De, Ruyter, van Steveninck, E.D. 1990Biological and chemical processes in communities of bacteriaphytoplankton and zooplankton in the low river Rhine. (Biology of the River Rhine)Biologie des Rheins.1151160Google Scholar
  2. 2.
    Alexandre, A., Meunier, J.D., Colin, F., Koud, J.M. 1997Plant impact on the biogeochemical cycle of silicon and related weathering processesGeochim. Cosmochim. Acta61677682CrossRefGoogle Scholar
  3. 3.
    Bartoli, F. 1983The biogeochemical cycle of silicon in two temperate forest ecosystemsEnviron. Biogeochem. Ecol. Bull35469476Google Scholar
  4. 4.
    Beale, B.M.L. 1962Some uses of computers in operational researchIndustrielle Organisation312728Google Scholar
  5. 5.
    Berner, R.A. 1992Weathering, plants, and the long-term carbon cycleGeochim. Cosmochim. Acta5632253231CrossRefGoogle Scholar
  6. 6.
    Bierman V.J., Preston S.D. and Silliman S.E. 1988. Development of Estimation Methods for Tributary Loading Rates of Toxic Chemicals. Perdue University Water Resources Research CenterWest LafayetteIndiana.Google Scholar
  7. 7.
    Bluth, G.J., Kump, L.R. 1994Lithologic and climatologic controls of river chemistryGeochim. Cosmochim. Acta5823412359CrossRefGoogle Scholar
  8. 8.
    Burkholder, J.M., Sheath, R.G. 1985Characteristics of softwater streams in Rhode Island. I. A comparative analysis of physical and chemical variablesHydrobiologia12897108Google Scholar
  9. 9.
    Capblanq, J., Tourenq, J.N. 1978Water Chemistry of the River LotAnnal. Limnol.142537Google Scholar
  10. 10.
    Carnelli, A.L., Madella, M., Theurillat, J.P. 2001Biogenic silica production in selected Alpine plant species and plant communitiesAnn. Bot.87425434CrossRefGoogle Scholar
  11. 11.
    Conley, D.J. 2002Terrestrial ecosystems and the global biogeochemical silica cycleGlobal Biogeochem. cyc.1668(1)68(8)Google Scholar
  12. 12.
    Derry L.A., Kurtz C., Ziegler K., Chadwick O.A. and Kelley E.F. 2001. Plant Phytolith source of dissolved silica in Hawaiian streams from Ge/Si ratios. http://www.lpi.usra.edu/meetings/ gold2001/pdf/3805.pdf. Google Scholar
  13. 13.
    Dietzel, M. 2000Dissolution of silicates and the stability of polysilicic acidGeochim. Cosmochim. Acta6432753281CrossRefGoogle Scholar
  14. 14.
    Dolan, D.M., Yui, A.K., Geist, R.D. 1981Evaluation of river load estimation methods for total phosphorusJ. Great Lakes Res.7207214Google Scholar
  15. 15.
    Emadian, S.F., Newton, R.J. 1989Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by siliconJ. Plant Physiol.13498103Google Scholar
  16. 16.
    Ehinger R., Folit R.E. and Zeitlin-Hale L. 1978. The Pawcatuck River Estuary and Little Narragansett Bay. Narragansett, Coastal Resources Center, NOAA, University of Rhode Island.Google Scholar
  17. 17.
    Epstein, E. 1994The anomaly of silicon in plant biologyProceedings of the National Academy of Science.911117Google Scholar
  18. 18.
    Epstein, E. 1999SiliconAnn. Rev. Plant Physiol. Mol. Biol.5064164CrossRefGoogle Scholar
  19. 19.
    Epstein, E. 2000The discovery of the essential elementsKung, S.D.Yang, S.F. eds. Discoveries in Plant BiologyWorld Scientific. IIISingaporeGoogle Scholar
  20. 20.
    Epstein E. 2001. Silicon in plants: facts vs. concepts. In: Datno L.E., Synder G.H. and Korndorfer G.H. (eds), Silicon in Agriculture. Elsevier Science. Google Scholar
  21. 21.
    Fulweiler R.W. 2003. An assessment of carbon, nutrient, and total suspended sediment export from the Wood-Pawcatuck watershed to Little Narragansett Bay. Masters Thesis Graduate School of Oceanography, University of Rhode Island: 170. Google Scholar
  22. 22.
    Garnier, J., Billen, G., Coste, M. 1995Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modelingLimnol. Oceanograph.40750765Google Scholar
  23. 23.
    Hecky, R.E., Campbell, H.P., Hendzel, L.L. 1993The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceansLimnol. Oceanograph.38709724Google Scholar
  24. 24.
    Hermes O.D., Gromet L.P. and Murray D.P. 1994 Bedrock Geologic Map of Rhode Island: Rhode Island: Map Series No. 1, University of Rhode Island. Google Scholar
  25. 25.
    Hinsinger, P., Barros, O.N., Benedetti, M.F., Noack, Y., Callot, G. 2001Plant induced weathering of basaltic rock experimental evidenceGeochim. Cosmochim. Acta65137152CrossRefGoogle Scholar
  26. 26.
    Hodson, M.J., Sangster, A.G. 1999Aluminium/silicon interactions in conifersJ. Inorg. Biochem.768998CrossRefGoogle Scholar
  27. 27.
    Hull, R.J. 2004Scientists start to recognize silicons beneficial effectsTurfgrass Trends, Golfdom606970Google Scholar
  28. 28.
    Hooker, T.D., Compton, J.E. 2003Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonmentEcol. Appl.13299313Google Scholar
  29. 29.
    Jacquez, J.A., Norusis, M. 1973Sampling experiments on the estimation of parameters in heteroscedastic linear regressionBiometrics29771780Google Scholar
  30. 30.
    Jones R.L. and Hay W.W. 1975. Bioliths. In: Gieseking J.E. (ed.), Soil Components volume 2: Inorganic Components, pp. 481–496. Google Scholar
  31. 31.
    Justic, D, Turner, R.E., Rabalais, N.N. 2003Climatic influences on riverine nitrate flux: implications for coastal marine eutrophication and hypoxiaEstuaries26111Google Scholar
  32. 32.
    Kellog, D.Q., Jourbert, L., Gold, A. 2000MANAGE: a Method for AssessmentNutrient-Loading, And Geographic Evaluation of Nonpoint pollutionUniversity of Rhode IslandDepartment of Natural Resources ScienceKingston, RIGoogle Scholar
  33. 33.
    Lachat Quikchem Methods 2000. Zwelleger Analytics. http://www.lachatinstruments.com/applications/USEPA.asp. Google Scholar
  34. 34.
    Likens, G.E., Bormann, F.H., Pierce, R.S., Eaton, J.S., Johnson, N.M. 1977Biogeochemistry of a Forested EcosystemSpringer-VerlagNew YorkGoogle Scholar
  35. 35.
    Lynn, S.G., Kilham, S.S., Kreeger, D.A., Interland, S.J. 2000Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephandosiscus minutulus (Bacillariophyceae)J. Phycol.36510522CrossRefGoogle Scholar
  36. 36.
    Markewitz, D., Richter, D.D. 1998The bio in aluminum and silicon geochemistryBiogeochemistry42235252CrossRefGoogle Scholar
  37. 37.
    Marschner, H. 1995Mineral Nutrition in Higher PlantsAcademic Press LimitedSan DiegoCaliforniaGoogle Scholar
  38. 38.
    Nagorski S.A., Morre J.N. and Smith D.B. 2001. Geochemical studies and relations between water quality and streamflow in the Upper Blackfoot WatershedMontana: Data for July 1997 – December 1998. U.S. Geological Survey Open File Report 01–0059.Google Scholar
  39. 39.
    Ohowa, B.O., Mwashote, B.M., Shimbira, W.S. 1997Dissolved inorganic nutrient fluxes from two seasonal rivers into Gazi Bay, KenyaEstuar. Coast. Shelf Sci.45189195CrossRefGoogle Scholar
  40. 40.
    Parsons T.R., Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seawater analysis, Pergamon Press, OxfordNew York.Google Scholar
  41. 41.
    Prego, R., Vergara, J. 1998Nutrient fluxes to the Bay of Biscay from Cantabrian rivers (Spain)Oceanol. Acta21271278CrossRefGoogle Scholar
  42. 42.
    Preston, S.D., Bierman, V.J., Silliman, S.E. 1989An evaluation of methods for estimation of tributary loadsWater Resour. Res.2513791389Google Scholar
  43. 43.
    Raven, J.A. 1983The transport and function of silicon in plantsBiol. Rev.58179207Google Scholar
  44. 44.
    Rhode Island Department of Environmental Management (RIDEM) 2003. Personal communication.Google Scholar
  45. 45.
    Rhode Island Geographic Information System 2003. http://www dc.uri.edu/rigis/.Google Scholar
  46. 46.
    Richards R.P. 1999. Estimation of Pollutant Loads in Rivers and Streams: A Guidance Document for NPS Programs, Prepared Under Grant X998397–01–0 U.S. Environmental Protection Agency.Google Scholar
  47. 47.
    Richards, R.P., Holloway, J. 1987Monte Carlo Studies of Sampling Strategies for estimating tributary loadsWater Resour. Res.2319391948Google Scholar
  48. 48.
    Ricker, W.E. 1973Linear regressions in fishery researchJ. Fish. Res. Board Canada30409434Google Scholar
  49. 49.
    Rosenblatt A.E. 2000. Hydric soil patterns in riparian corridors of the glaciated northeast: ground-truthing the soil survey geographic data base (SSURGO). Masters Thesis Natural Resource ScienceUniversity of Rhode Island: 218.Google Scholar
  50. 50.
    Rosenblatt, A.E., Gold, A.J., Stolt, M.H., Groffman, P.M., Kellogg, D.Q. 2001Identifying Riparian sinks for watershed nitrate using soil surveysJ. Environ. Qual.3015961604PubMedGoogle Scholar
  51. 51.
    Schlesinger, W.H. 1997Biogeochemistry: An Analysis if Global ChangeAcademic PressNew YorkGoogle Scholar
  52. 52.
    Strickland, J.D.H., Parsons, T.R. 1968A Practical Handbook of Seawater Analysis, Fisheries research board of CanadaQueen’s PrinterOttawaCanadaGoogle Scholar
  53. 53.
    Takahashi, E., Ma, J.F., Miyake, Y. 1990The possibility of silicon as an essential element for higher plantsComm. Agri. Food Chem.299122Google Scholar
  54. 54.
    Tamai, K., Ma, J.M. 2003Characterization of silicon uptake by rice rootsNew Phytol.158431436CrossRefGoogle Scholar
  55. 55.
    Wall, G.R., Phillips, P.J., Riva-Murray, K. 1998Seasonal and spatial patterns of nitrate and silica concentrations in Canajoharie Creek, New YorkJ. Environ. Qual.27381389Google Scholar
  56. 56.
    White, A.F., Blum, A.E. 1995Effects of climate on chemical weathering in watershedsGeochim. Cosmochim. Acta5917291747CrossRefGoogle Scholar
  57. 57.
    Wood Pawcatuck Watershed Association 2003. Personal communication. Google Scholar
  58. 58.
    Zar, J.H. 1999Biostatistical AnalysisPrentice-Hall, IncUpper Saddle RiverNJGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  2. 2.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations