Biogeochemistry

, Volume 73, Issue 1, pp 71–91 | Cite as

Modeling soil CO2 emissions from ecosystems

  • S.J. Del Grosso
  • W.J. Parton
  • A.R. Mosier
  • E.A. Holland
  • E. Pendall
  • D.S. Schimel
  • D.S. Ojima
Article

Abstract.

We present a new soil respiration model, describe a formal model testing procedure, and compare our model with five alternative models using an extensive data set of observed soil respiration. Gas flux data from rangeland soils that included a large number of measurements at low temperatures were used to model soil CO2 emissions as a function of soil temperature and water content. Our arctangent temperature function predicts that Q10 values vary inversely with temperature and that CO2 fluxes are significant below 0 °C. Independent data representing a broad range of ecosystems and temperature values were used for model testing. The effects of plant phenology, differences in substrate availability among sites, and water limitation were accounted for so that the temperature equations could be fairly evaluated. Four of the six tested models did equally well at simulating the observed soil CO2 respiration rates. However, the arctangent variable Q10 model agreed closely with observed Q10 values over a wide range of temperatures (r2 = 0.94) and was superior to published variable Q10 equations using the Akaike information criterion (AIC). The arctangent temperature equation explained 16–85% of the observed intra-site variability in CO2 flux rates. Including a water stress factor yielded a stronger correlation than temperature alone only in the dryland soils. The observed change in Q10 with increasing temperature was the same for data sets that included only heterotrophic respiration and data sets that included both heterotrophic and autotrophic respiration.

Keywords

AIC Decomposition Ecosystem modeling Soil C Soil respiration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. 1973

    Information theory and an extension of the maximum likelihood principle

    Petrov, B.N.Csaki, F. eds. 2nd International Symposium on Information TheoryAkademiai KiadoBudapest267281
    Google Scholar
  2. Andrews, J.A., Harrison, K.G., Matamala, R., Schlesinger, W.H. 1999Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE)Soil Sci. Soc. Am. J6314291435Google Scholar
  3. Bernier, P.Y., Breda, N.,  et al. 2002Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurementsForest Ecol. Manag163185196CrossRefGoogle Scholar
  4. Billings, S.A., Richter, D.D., Yarie, J. 1998Soil carbon dioxide fluxes and profile concentrations in two boreal forestsCan. J. Forest Res2817731783CrossRefGoogle Scholar
  5. Boone, R.D., Nadelhoffer, K.J., Canary, J.D., Kaye, J.P. 1998Roots exert a strong influence on the temperature sensitivity of soil respirationNature396570572CrossRefGoogle Scholar
  6. Bremer, D.J., Ham, J.M., Owensby, C.E., Knapp, K.A. 1998Responses of soil respiration to clipping and grazing in a tallgrass prairieJournal of Environmental Quality2715391548Google Scholar
  7. Brooks, P.D., Williams, M.W., Schmidt, S.K. 1996Microbial activity under alpine snowpacks, Niwot RidgeColoradoBiogeochemistry3293113Google Scholar
  8. Brumme R. 1995. Mechanisms for carbon and nutrient release and retention in beech forest gaps. 3. Environmental regulation of soil respiration and nitrous oxide emissions along a microclimatic gradient. Plant and Soil 168–169, 593–600.Google Scholar
  9. Burnham, K.P., Anderson, D.R. 1998Model Selection and Inference: A Practical Information-Theoretic ApproachSpringerNew YorkGoogle Scholar
  10. Burke, I.C., Kaye, J.P., Bird, S.P., Hall, S.A., McCulley, R.L., Sommerville, G.L. 2003

    Evaluating and testing models of terrestrial biogeochemistry: The role of temperature in controlling decomposition

    Canham, C.D.Cole, J.J.Lauenroth, W.K. eds. Models in Ecosystem SciencePrinceton University PressPrinceton, New Jersey225253
    Google Scholar
  11. Butnor, J.R., Johnsen, K.H., Oren, R., Katul, G.G. 2003Reduction of forest floor respiration by fertilization on both carbon dioxide enriched and reference 17-year-old loblolly pine standsGlobal Change Biol9849861CrossRefGoogle Scholar
  12. Chen, W., Sims, D.A., Lou, Y., Coleman, J.S., Johnson, D.W. 2000Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio?Global Change Biol6931941CrossRefGoogle Scholar
  13. Coleman K. and Jenkinson D.S. 1999. ROTHC-26.3, a model for the turnover of carbon in soil: Model description and user’s guide. http://www.iacr.bbsrc.ac.uk/res/depts/soils/carbon/tagree_dos.html.Google Scholar
  14. Davidson, E.A., Belk, E., Boone, R.D. 1998Soil water content and temperature as independent or confounding factors controlling soil respiration in a temperate mixed hardwood forestGlobal Change Biol4217227CrossRefGoogle Scholar
  15. Del Grosso, S.J., Parton, W.J., Mosier, A.R., Hartman, M.D., Brenner, J., Ojima, D.S., Schimel, D.S. 2001

    Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model

    Schaffer, M.Ma, L.Hansen, S. eds. Modeling Carbon and Nitrogen Dynamics for Soil ManagementCRC PressBoca Raton, FL303332
    Google Scholar
  16. Fahnestock, L.T., Jones, M.H., Welker, J.M. 1999Wintertime CO2 efflux from arctic soils: implications for annual carbon budgetsGlobal Biogoechem. Cycles13775779CrossRefGoogle Scholar
  17. Frolking, S.E., Mosier, A.R., Ojima, D.S., Li, C., Parton, W.J., Potter, C.S., Stenger, E., Priesack, R., Haberbosch, C., Dörsch, P., Flessa, H., Smith, K.A. 1998Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year round measurements by four modelsNutr. Cycl. Agroecosys5277105CrossRefGoogle Scholar
  18. Gu L., Post W.M. and King A.M. 2004. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Global Biogeochem. Cycles 18 GB1022, doi:10.1029/2003GB002119.Google Scholar
  19. Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Hogberg, M.N., Nyberg, G., Ottosson-Lofvenius, M., Read, D.J. 2001Large-scale forest girdling shows that current photosynthesis drives soil respirationNature411789792Google Scholar
  20. Holland, E.A., Neff, J.C., Townsend, A.R., McKeown, B. 2000Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for modelsGlobal Biogeochem. Cycles1411371151CrossRefGoogle Scholar
  21. Janssens, I.A., Lankreijer, H., Matteucci, G., Kowalski, A.S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T. 2001Productivity overshadows temperature in determining soil and ecosystem respiration across European forestsGlobal Change Biol2001269278CrossRefGoogle Scholar
  22. Jenkinson, D.S. 1990The turnover of soil organic carbon and nitrogen in soilPhilos. Trans. R. Soc. Lond. Bull329361368Google Scholar
  23. Jenkinson, D.S., Adams, D.E., Wild, A. 1991Model estimates of CO2 emissions from soil in response to global warmingNature351304306CrossRefGoogle Scholar
  24. Katterer, T.M., Reichstein, O., Andren, A., Lomander, A. 1998Temperature dependence of organic matter decomposition – a critical review using literature data analyzed with different modelsBiol. Fertil. Soils27258262CrossRefGoogle Scholar
  25. Kelly, R.H., Parton, W.J., Hartman, M.D., Stretch, L.K., Ojima, D.S., Schimel, D.S. 2000Intra and interannual variability of ecosystem processes in shortgrass steppeJ. Geophys. Res. Atmos10520,09320,100Google Scholar
  26. Kessavalou, A., Mosier, A.R., Doran, J.W., Drijber, R.A., Lyon, D.L., Heinemeyer, O. 1998Fluxes of carbon dioxidenitrous oxideand methane in grass sod and winter wheat-fallow tillage managementJ. Environ. Qual2710941104Google Scholar
  27. Kirschbaum, M.U.F. 1995The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic matter storageSoil Biol. Biochem27753760Google Scholar
  28. Landsberg, J.J., Waring, R.H. 1997A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioningForest Ecol. Manage95209228CrossRefGoogle Scholar
  29. Leiros, M.C., Trasar-Cepeda, C., Seoane, S., Gil-Sotres, F. 1999Dependence of mineralization of soil organic matter on temperature and moistureSoil Biol. Biochem31327335CrossRefGoogle Scholar
  30. Liski, J., Makela, A., Westman, C.J. 1999CO2 emissions from soil in response to climatic warming are overestimated – the decomposition of old soil organic matter is tolerant of temperatureAmbio28171174Google Scholar
  31. Lomander, A., Katterer, T., Andren, O. 1998Modeling the effects of temperature and moisture on CO2 evolution from top and subsoil using a multi-compartment approachSoil Biol. Biochem3020232030Google Scholar
  32. Lloyd, J., Taylor, J.A. 1994On the temperature dependence of soil respirationFunct. Ecol8315323Google Scholar
  33. MsQuarrie, A.D.R., Tsai, C.L. 1998Regression and Time Series Model SelectionWorld ScientificSingaporeGoogle Scholar
  34. Metherell A.K., Harding L.S., Cole C.V. and Parton W.J. 1993. CENTURY soil organic matter model environmentTechnical documentation, Agroecosystem version 4.0. Great Plains System Research Unit Technical Report No. 4. USDA-ARS, Fort Collins, Colorado.Google Scholar
  35. Mosier, A.R., Schimel, D.S., Valentine, D.W., Bronson, K.F., Parton, W.J. 1991Methane and nitrous oxide fluxes in nativefertilizedand cultivated grasslandsNature350330332CrossRefGoogle Scholar
  36. Mosier, A.R., Klemeddtson, L.K., Sommerfeld, R.A., Musselman, R.C. 1993Methane and nitrous oxide flux in a Wyoming subalpine meadowGlobal Biogeochem. Cycles7771784Google Scholar
  37. Mosier, A.R., Parton, W.J., Valentine, D.W., Ojima, D.S., Schimel, D.S., Delgado, J.A. 1996CH4N2O fluxes in the Colorado shortgrass steppe: 1. impact of landscape and nitrogen additionGlobal Biogeochem. Cycles10387399CrossRefGoogle Scholar
  38. Mosier, A.R., Parton, W.J., Valentine, D.W., Ojima, D.S., Schimel, D.S., Hienemeyer, O. 1997CH4N2O fluxes in the Colorado shortgrass steppe: 2. Long-term impact of land use changeGlobal Biogeochem. Cycles112942CrossRefGoogle Scholar
  39. O’Connell, A.M. 1990Microbial decomposition (respiration) of litter in eucalypt forests of south-western Australia: an empirical model based on laboratory incubationsSoil Biol. Biochem22153160CrossRefGoogle Scholar
  40. Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. 1987Analysis of factors controlling soil organic matter levels in the great plains regionSoil Sci. Soc. Am. J5111731179Google Scholar
  41. Parton, W.J., Ojima, D.S., Cole, C.V., Schimel, D.S. 1994

    A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management

    Quantitative Modeling of Soil Forming ProcessesSoil Science Society of AmericaSpecial Pub. 39Madison, WI147167
    Google Scholar
  42. Parton, W.J., Hartman, M., Ojima, D.S., Schimel, D.S. 1998DAYCENT: Its land surface submodel: description and testingGlobal Planet. Change193548CrossRefGoogle Scholar
  43. Pastor, J., Post, W.M. 1986Influence of climatesoil moistureand succession on forest carbon and nitrogen cyclesBiogeochemistry2327Google Scholar
  44. Pendall, E., Del Grosso, S., King, J.Y., LeCain, D.R., Milchunas, D.G., Morgan, J.A., Mosier, A.R., Ojima, D.S., Parton, W.J., Tans, P.P., White, J.W.C. 2003Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grasslandGlobal Biogeochem. Cycles17101029/2001GB001821CrossRefGoogle Scholar
  45. Raich, J.W., Potter, C.S. 1995Global patterns of carbon dioxide emissions from soilsGlobal Biogeochem. Cycles92336Google Scholar
  46. Robertson, G.P., Paul, E.A., Harwood, R.R. 2000Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphereScience28919221925PubMedGoogle Scholar
  47. Sakamoto, Y. 1986Akaike Information Criterion StatisticsKTK Scientific PublishersTokyoGoogle Scholar
  48. Savage, K.E., Davidson, E.A. 2001Interannual variation of soil respiration in two New England forestsGlobal Biogeochem. Cycles15337350CrossRefGoogle Scholar
  49. Saxton, K.E., Rawls, W.J. Romberger J.S., Papendick, R.I. 1986Estimating generalized soil-water characteristics from textureSoil Sci. Soc. Am. J5010311036Google Scholar
  50. Schimal, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., Townsend, A.R. 1994Climatic, edaphic, and biotic controls over storage and turnover of carbon in soilsGlobal Biogeochem. Cycles8279293CrossRefGoogle Scholar
  51. Schimel, D.S., Alves, D., Enting, I., Heimann, M., Joos, F., Raynaud, D., Wigley, T. 1996

    CO2the Carbon Cycle

    Houghton, J.T.Filho, L.G.M.Callander, B.A.Harris, N.Kattenberg, A.Maskell, K. eds. Climate Change 1995Cambridge University PressCambridge7686
    Google Scholar
  52. Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A., Field, C.B. 2002Grassland responses to global environmental changes suppressed by elevated CO2Science29819871990CrossRefPubMedGoogle Scholar
  53. Sommerfeld, R.A., Massman, J., Musselman, R.C. 1996Diffusional flux of CO2 through snow: spatial and temporal variability among alpine-subalpine sitesGlobal Biogeochem. Cycles10473482CrossRefGoogle Scholar
  54. Trumbore, S.E., Bonani, G., Wölfli, W. 1990

    The rates of carbon cycling in several soils from AMS 14C measurements of fractionated soil organic matter

    Bouwman, A.F. eds. Soils and the Greenhouse EffectWileyNew York405414
    Google Scholar
  55. Walse, C., Berg, B., Sverdrup, H. 1998Review and synthesis of experimental data on organic matter decomposition with respect to the effects of temperaturemoistureand acidityEnviron. Rev62540CrossRefGoogle Scholar
  56. Wang, Y., Amundson, R., Niu, X.F. 2000Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 fluxGlobal Biogeochem. Cycles14199211CrossRefGoogle Scholar
  57. Xu, M., Qi, Y. 2001Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forestGlobal Biogeochem. Cycles15687696CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S.J. Del Grosso
    • 1
  • W.J. Parton
    • 1
  • A.R. Mosier
    • 1
    • 2
  • E.A. Holland
    • 3
  • E. Pendall
    • 4
  • D.S. Schimel
    • 3
  • D.S. Ojima
    • 1
  1. 1.Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.Agriculture Research ServiceUS Department of AgricultureFortCollinsUSA
  3. 3.National Center for Atmospheric ResearchBoulderUSA
  4. 4.Institute for Arctic and Alpine ResearchUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations