Advertisement

Biogeochemistry

, Volume 72, Issue 2, pp 147–167 | Cite as

Linkage of MIKE SHE to Wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation

  • Jianbo Cui
  • Changsheng Li
  • Ge Sun
  • Carl Trettin
Article

Abstract.

This study reports the linkage between MIKE SHE and Wetland-DNDC for carbon dynamics and greenhouse gases (GHGs) emissions simulation in forested wetland.Wetland-DNDC was modified by parameterizing management measures, refining anaerobic biogeochemical processes, and was linked to the hydrological model – MIKE SHE. As a preliminary application, we simulated the effect of water table position and forest management practices on GHGs emissions and carbon dynamics to test the capabilities of the models for simulating seasonal and long-term carbon budget. Simulation results show that water table changes had a remarkable effect on GHGs fluxes. Anaerobic conditions in forested wetland soils reduce organic matter decomposition and stimulate CH4 production. Decrease in the water table from the wetland surface decreases methane flux, while CO2 emission was lower with a rise in the water table. When there is a drop in water availability, wetlands can become a net source of atmospheric CO2 as photosynthesis is decreased and respiration loss enhanced. Forest management activities i.e. harvest, fertilization and reforestation practices were parameterized in the model. We predicted carbon fluxes and stores on a pine forest under different forest management scenarios during 160 years. Results show that average long-term carbon storage in ecosystem pools increased with increasing rotation length; Soil carbon showed only minor, long-term responses to harvesting events. In contrast, carbon sequestered in tree biomass and litter fluctuated widely, in concert with the harvest cycle. Application of nitrogen fertilizer increased average carbon storage in all ecosystem pools and wood products. We presented the linkage of MIKE SHE and Wetland-DNDC as a way to use of simulation modeling tools for assessing GHGs mitigation strategies, carbon budgeting and forest management.

Keywords

Biogeochemical modeling Carbon dynamics Forest wetland Greenhouse gases emission Mitigation strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D., Reich, P.B., Goulden, M.L. 1996Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlationOecologia10257265CrossRefGoogle Scholar
  2. Anderson, I.C., Levine, J.S. 1986Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirersAppl. Environ. Microbiol51938945Google Scholar
  3. Arah, J.R.M., Stephen, K. 1998A model of athe processes leading to methane emission from peatlandAtmos. Environ3232573264CrossRefGoogle Scholar
  4. Aurela, M., Laurila, T., Tuoviner, J.P. 2001Seasonal CO2 balances of a subarctic mireJ. Geophys. Res10616231638CrossRefGoogle Scholar
  5. Bollmann, A., Conrad, R. 1998Influence of O2 availability on NO and N2O release by nitrification and denitrification in soilsGlobal Change Biol4387396CrossRefGoogle Scholar
  6. Bubier J.L., Bhatia G., Moore T.R., Roulet N.T. and Lafleur P.M. 2004. Between year and site variability in growing season net ecosystem CO2 exchange at a large peatland. Ontario, Canada, Ecosystems, in press.Google Scholar
  7. Cao, M., Marshall, S., Gregson, K. 1996Global carbon exchange and methane emissions from natural wetlands: application of a process-based modelJ. Geophys. Res1011439914414CrossRefGoogle Scholar
  8. Chertov, O.G. 1990SPECOM – A single tree model of pine stand /raw humus soil ecosystemEcol. Model50107132CrossRefGoogle Scholar
  9. De Willigen, P. 1991Nitrogen turnover in the soil-crop system: comparison of fourteen simulation modelsFertilizer Res27141149CrossRefGoogle Scholar
  10. Frolking S., Roulet N., Moore T., Lafleur P., Bubier J. and Crill P. 2002. Modeling the seasonal to annual carbon balance of northern peatlands. Global Biogeochem. Cycles 16(3), doi: 10.1029/2001GB1457.Google Scholar
  11. Granberg, G., Ottosson-Lofvenius, H., Grip, H., Sundh, I., Nilsson, M. 2001Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern SwedenGlobal Biogeochem. Cycles15977991CrossRefGoogle Scholar
  12. Grant, R.F. 1998Simulation of methanogenesis in the mathematical model ECOSYSSoil Biol. Biochem30883896CrossRefGoogle Scholar
  13. Holland, E.A., Schimel, D.S. 1994Ecosystem and physiological controls over methnae production in northern wetlandsJ. Geophys. Res9915631571CrossRefGoogle Scholar
  14. IPCC1991Intergovernmental Panel on Climate ChangeGuidelines for National Greenhouse Gas InventoriesOECD/ODCEParisGoogle Scholar
  15. Johnson, D.W., Knoepp, J.D., Swank, W.T., Shan, J., Morris, L.A., Van Lear, D.H., Kapeluck, P.R. 2002Effects of forest management on soil carbon: results of some long-term resampling studiesEnviron. Pollut116S201S208CrossRefPubMedGoogle Scholar
  16. Joiner, D.W., Lafleur, P.M., McCaughey, J.H., Bartlett, P.A. 1999Inter annual variability in carbon dioxide exchanges at a boreal wetland in the BORES northern study areaJ. Geophys. Res1042766327672CrossRefGoogle Scholar
  17. Kettunen, A., Kaitala, V., Lehtinen, A., Lohila, A., Alm, J., Silvola, J., Martikainen, P.J. 1999Methane production and oxidation potentials in relation to water table fluctuations in two boreal miresSoil Biol. Biochem3117411749CrossRefGoogle Scholar
  18. Lafleur, P.M., Roulet, N.T., Bubier, J.L., Frolking, S., Moore, T.R. 2003Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bogGlobal Biogeochemical Cycles171036doi: 10.1029/2002GB001CrossRefGoogle Scholar
  19. Lafleur, P.M., Roulet, N.T., Admiral, S.W. 2001aAnnual cycle of CO2 exchange at a bog peatlandJ. Geophys. Res10630713081CrossRefGoogle Scholar
  20. Li, C., Aber, J., Stange, F., Butterbach-Bahl, K., Papen, H. 2000A process-oriented model of N2O and NO emissions from forest soils: 1, Model developmentJ. Geophys. Res105 43694384Google Scholar
  21. Li, C., Frolking, S., Frolking, T.A. 1992A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivityJ. Geophys. Res9797599776Google Scholar
  22. McClain, M.E., Mayorga, E., Logsdon, M.G., Richey, J.E. 1996A conceptual framework for modelling organic dynamics in large river systemsȁ9Bottrell, S.H. eds. Fourth International Symposium on the Geochemistry of the Earth’s SurfaceUniversity of LeedsLeeds 323326Google Scholar
  23. Minkinnen, K., Korhonen, R., Savolainen, I., Laine, J. 2002Carbon balance and radiative forcing of Finnish peatlands 1900–2100 – the impact of forestry drainageGlobal Change Biol8785799CrossRefGoogle Scholar
  24. Moore, T.R., Dalva, M. 1993The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soilJ. Soil Sci44 651664Google Scholar
  25. Nieveen, J.P., Jacobs, C.M.J., Jacobs, A.F.G. 1998Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bogGlobal Change Biol4823850CrossRefGoogle Scholar
  26. Paul, E.A., Clark, F.E. 1989Soil Microbiology and Biochemistry, 2nd edAcademic PressSan DiegoBoston, New York, TokyoToronto157166Google Scholar
  27. Refsgaard, J.C., Storm, B. 1995Singh, V.P. eds. MIKE SHE Computer Models in Watershed HydrologyWater Resource PublicationsColorodoUSA806846Google Scholar
  28. Sass, R.L., Fisher, F.M., Turner, F.T., Jund, M.F. 1991Methane emission from rice fields as influenced by solar radiation, temperatureand straw incorporationGlobal Biogeochem. Cycles5335350Google Scholar
  29. Schreader, C.P., Rouse, W.R., Griffis, T.J., Boudreau, L.D., Blanken, P.D. 1998Carbon dioxide fluxes in a northern fen during a hotdry summerGlobal Biogeochem. Cycles12729740CrossRefGoogle Scholar
  30. Segers, R., Leffelaar, P.A. 2001aModeling methane fluxed in wetland with gas-transporting plants. 1. Single root scaleJ. Geophys. Res10635113528CrossRefGoogle Scholar
  31. Segers, R., Leffelaar, P.A. 2001bModeling methane fluxed in wetland with gas-transporting plants. 3. Plot scaleJ. Geophys. Res10635413558CrossRefGoogle Scholar
  32. Segers, R., Rappoldt, C., Leffelaar, P.A. 2001Modeling methane fluxed in wetland with gas-transporting plants 2. Soil layer scaleJ. Geophys. Res10635293540CrossRefGoogle Scholar
  33. Shurpali, N.J., Verma, S.B., Kim, J., Arkebauer, T.J. 1995Carbon dioxide exchange in a peatland ecosystemJ. Geophys. Res1001431914326CrossRefGoogle Scholar
  34. Silvola, J., Alm, J., Ahlholm, U., Nykanen, H., Martikainen, P.J. 1996CO2 fluxes from peat in boreal mires under varying temperature and moisture conditionsJ. Ecology84219228Google Scholar
  35. Stumm, W., Morgan, J.J. 1981Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edJohn Wiley & SonsNew York418503Google Scholar
  36. Sun, G., Riekerk, H., Comerford, N.B. 1998Modeling the hydrologic impacts of forest harvesting on Florida flatwoodsJ. Am. Water Resour. Assoc34843854Google Scholar
  37. Trettin, C.C., Song, B., Jurgensen, M.F., Li, C. 2001Existing soil carbon models do not apply to forested wetlandsUS Department of AgricultureForest ServiceSouthern Research StationAshevilleNC10Gen. Tecsh. Rep. SRS-46Google Scholar
  38. Waddington, J.M., Roulet, N.T. 2000Carbon balance of a boreal patterned peatlandGlobal Change Biol68797CrossRefGoogle Scholar
  39. Walter, B.P., Heimann, M. 2000A process-basedclimate sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climateGlobal Biogeochem. Cycles14745765CrossRefGoogle Scholar
  40. Walter, B.P., Heimann, M., Matthews, E. 2001aModeling modern methane emissions from natural wetlands: 1. Model description and resultsJ. Geophys. Res1063418934206CrossRefGoogle Scholar
  41. Walter, B.P., Heimann, M., Matthews, E. 2001bModeling modern methane emissions from natural wetlands: 2 Interannual variations 1982–1993J. Geophys. Res1063420734219CrossRefGoogle Scholar
  42. Wassmann, R., Wang, M.X., Shangguan, X.J., Xie, X.L., Shen, R.X., Wang, Y.S., Papen, H., Rennenberg, H., Seiler, W. 1993First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-province (PR China)Geophys. Res., Lett2020712074Google Scholar
  43. Weltzin, J.F., Pastor, J., Harth, C., Bridgham, S.D., Updegraff, K., Chapin, C.T. 2000Response of bog and fen plant communities to warming and water-table manipulationsEcology81 34643478Google Scholar
  44. Whiting, G.J., Chanton, J.P. 2001Greenhouse carbon balance of wetlands: methane emission versus carbon sequestrationTellus53B521528Google Scholar
  45. Yagi, K., Manami, K. 1990Effect of organic matter application on methane emission from some Japanese paddy fieldsSoil Sci. Plant Nutr36599610Google Scholar
  46. Zoltai, S.C., Martikainen, P.J. 1996Estimated extent of forested peatlands and their role in the global carbon cycleApps, M.J.Price, D.T. eds. Forest Ecosystems, Forest Management and the Global Carbon CycleSpringer VerlagHeidelberg4758NATO Advanced Science Institutes SeriesGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Jianbo Cui
    • 1
    • 4
  • Changsheng Li
    • 1
  • Ge Sun
    • 2
  • Carl Trettin
    • 3
  1. 1.Institute for the Study of Earth, Oceans, and SpaceUniversity of New Hampshire>DurhamUSA
  2. 2.Department of ForestryNorth Carolina State UniversityRaleighUSA
  3. 3.Forest Service, Center for Forested Wetlands ResearchUSDACharlestonUSA
  4. 4.Ecological Modelling and Carbon Science Laboratory, Institut des sciences de l‘environnementUniversité du Qubéc à Montréal(Quebec)Canada

Personalised recommendations