Advertisement

Biogeochemistry

, Volume 72, Issue 2, pp 191–232 | Cite as

The biogeochemistry of chlorine at Hubbard Brook, New Hampshire, USA

  • Gary M. Lovett
  • Gene E. Likens
  • Donald C. Buso
  • Charles T. Driscoll
  • Scott W. Bailey
Article

Abstract.

Chlorine is a minor constituent of most rocks and a minor (although essential) element in plants, but it cycles rapidly through the hydrosphere and atmosphere. In forest ecosystem studies, chloride ion (Cl) is often thought to be conservative in the sense that the sources and sinks within the ecosystem are assumed negligible compared to inputs and outputs. As such, Cl is often used as a conservative tracer to assess sources and transformations of other ions. In this paper we summarize research on chloride over the course of 36 years (1964–2000) at the Hubbard Brook Experimental Forest (HBEF) in central New Hampshire, USA. Evidence presented here suggests that in the 1960s and 1970s the dominant source of atmospheric Cl deposition was from pollutant sources, probably coal burning. In the 1970s the Cl inputs in bulk deposition declined, and the lower Cl deposition in the last two decades is dominated by marine sources. Between 1964 and 2000 there was no significant trend in Cl export in stream flow, thus the net hydrologic flux (NHF  = bulk deposition inputs − streamflow outputs) has changed over this period. Early in the record the NHF was on average positive, indicating net retention of Cl within the system, but since about 1980 the NHF has been consistently negative, indicating an unmeasured input or source within the ecosystem. Dry deposition can account for at least part of that unmeasured source, and it appears that release of Cl from mineralization of soil organic matter (SOM) may also play an important role. We believe that accumulation of Cl in vegetation during the 1960s and 1970s offset the unmeasured source and resulted in net ecosystem retention. Accumulation of vegetative biomass has ceased since about 1982, leading to the apparent net export (negative NHF) since that time. Although we have no direct measurements of Cl accumulation in vegetation, our estimates suggest that an aggrading forest could sequester about 32 mol Cl  ha−1 year−1, or about a third of the annual average bulk deposition flux to this ecosystem. Experimental additions of Cl to the forest floor cause increases in Cl concentration in foliage, throughfall, and soil solution. Manipulations of vegetation also affect the Cl cycle. Harvesting or devegetation of watersheds causes an increase in the Cl concentration and flux in stream water for several years after the disturbance. This period of release is followed by a period of reaccumulation of Cl that may last more than 15 years. In this respect, the behavior of Cl after disturbance parallels that of NO3, for which export increases after disturbance due to reduced plant nitrogen uptake and mineralization of nitrogen from detritus, rather than SO42−, for which export decreases after disturbance due to pH-dependent adsorption onto mineral soils. The interannual pattern of Cl export from the system primarily reflects the atmospheric inputs, but the net retention and cycling of Cl within the system appears to be largely under biological, rather than geochemical, control.

Keywords

Atmospheric deposition Chloride biogeochemistry Forest disturbance Forest ecosystem Nutrient cycling Watershed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D., Ollinger, S.V., Driscoll, C.T., Likens, G.E., Holmes, R.T., Freuder, R.J., Goodale, C.L. 2002Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbationsEcosystems5648658Google Scholar
  2. Asplund, G., Christiansen, J.V., Grimvall, A. 1993A chloroperoxidase-like catalyst in soil: detection and characterization of some propertiesSoil Biol. Biochem254146CrossRefGoogle Scholar
  3. Bailey A.S., Hornbeck J.W., Campbell J.L. and Eagar C. 2003. Hydrometeorological database for Hubbard Brook Experimental Forest: 1955–2000, General Technical Report NE-305. Newtown Square, PA, USDA Forest Service, Northeastern Research Station.Google Scholar
  4. Bailey, S.W., Hornbeck, J.W. 1992Lithologic composition and rock weathering potential of forestedglacial-till soilsUSDA Forest ServiceNortheastern Research StationRadnorPAResearch Paper NE-662.Google Scholar
  5. Bailey, S.W., Buso, D.C., Likens, G.E. 2003Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystemEcology84471484Google Scholar
  6. Berger, T.W., Eagar, C., Likens, G.E., Stingeder, G. 2001Effects of calcium and aluminum chloride additions on foliar and throughfall chemistry in sugar maplesFor. Ecol. Manage1497590Google Scholar
  7. Billings, M.P., Wilson, J.R. 1964Chemical analyses of rocks and rock-minerals from New HampshireNew Hampshire Division of Economic DevelopmentConcord, NHGoogle Scholar
  8. Blum, J.D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson, C.E., Siccama, T.G., Eagar, C., Fahey, T.J., Likens, G.E. 2002Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystemsNature417729731CrossRefPubMedGoogle Scholar
  9. Bormann, F.H., Likens, G.E. 1979Pattern and Process in a Forested EcosystemSpringer-VerlagNew YorkGoogle Scholar
  10. Bormann, F.H., Likens, G.E. 1985Air and watershed management and the aquatic ecosystemLikens, G.E. eds. An Ecosystem Approach to Aquatic Ecology: Mirror Lake and its EnvironmentSpringer-VerlagNew York436444Google Scholar
  11. Bowen, H.J.M. 1966Trace Elements in BiochemistryAcademic PressLondonGoogle Scholar
  12. Buso, D.C., Likens, G.E., Eaton, J.S. 2000Chemistry of precipitation, streamwater and lakewater from the Hubbard Brook Ecosystem Study: a record of sampling protocols and analytical proceduresUnited States Department of AgricultureNewtown Square, PAGoogle Scholar
  13. Christ, M.J., Driscoll, C.T., Likens, G.E. 1999Watershed- and plot-scale tests of the mobile anion conceptBiogeochemistry47335353CrossRefGoogle Scholar
  14. Driscoll, C.T., Johnson, N.M., Likens, G.E., Feller, M.C. 1988Effects of acidic deposition on the chemistry of headwater streams – a comparison between Hubbard Brook, New-Hampshireand Jamieson Creek, British ColumbiaWater Resour. Res24195200Google Scholar
  15. Deer, W.A., Howie, R.A., Zussman, J. 1963Rock-Forming MineralsJohn Wiley and SonsNew YorkGoogle Scholar
  16. Eaton, J.S., Likens, G.E., Bormann, F.H. 1973Throughfall and stemflow chemistry in a northern hardwood forestJ. Ecol61495508Google Scholar
  17. Eaton, J.S., Likens, G.E. 1978Input of gaseous and particulate sulfur to a forest ecosystemTellus30546551Google Scholar
  18. Federer, C.A., Flynn, L.D., Martin, C.W., Hornbeck, J.W., Pierce, R.S. 1990Thirty years of hydrometerologic data at the Hubbard Brook Experimental Forest NH, General Technical Report NE-141USDA Forest service Northeastern Forest Experiment StationRadnor, PA44Google Scholar
  19. Gbondo-Tugbawa, S.S., Driscoll, C.T., Aber, J.D., Likens, G.E. 2001Evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystemWater Resour. Res3710571070CrossRefGoogle Scholar
  20. Goodale, C.L., Aber, J.D., Vitousek, P.M. 2003An unexpected nitrate decline in New Hampshire streamsEcosystems67586CrossRefGoogle Scholar
  21. Graedel, T.E., Keene, W.C. 1996The budget and cycle of Earth’s natural chlorinePure Appl. Chem6816891697Google Scholar
  22. Hall, R.O., Bernhardt, E.S., Likens, G.E. 2002Relating nutrient uptake with transient storage in forested mountain streamsLimnol. Oceanogr47255265Google Scholar
  23. Hamilton, J.T.G., McRoberts, W.C., Keppler, F., Kalin, R.M., Harper, D.B. 2003Chloride methylation by plant pectin: an efficient environmentally significant processScience301206209CrossRefPubMedGoogle Scholar
  24. Hedin, L.O., Armesto, J.J., Johnson, A.H. 1995Patterns of nutrient loss from unpolluted old-growth forests: evaluation of biogeochemical theoryEcology76493509Google Scholar
  25. Hirsch, R.M., Slack, J.R. 1984A nonparametric trend test for seasonal data with serial dependenceWater Resour. Res20727732Google Scholar
  26. Holmes, F.W., Baker, L.A. 1966Salt injury to trees. II. Sodium and chloride in roadside sugar maples in MassachusettsPhytopathology56633636Google Scholar
  27. Hyman, M.E., Johnson, C.E., Bailey, S.W., April, R.H., Hornbeck, J.W. 1998Chemical weathering and cation loss in a base-poor watershedGeol. Soc. Am. Bull1108595CrossRefGoogle Scholar
  28. Johnson, D.W., Lindberg, S.E. 1992Atmospheric Deposition and Nutrient Cycling in Forest EcosystemsSpringer-VerlagNew YorkGoogle Scholar
  29. Juang, F.H.T., Johnson, N.M. 1967Cycling of chlorine through a forested watershed in New EnglandJ. Geophys. Res7256415647Google Scholar
  30. Kauffman, S.J., Royer, D.L., Chang, S.B., Berner, R.A. 2003Export of chloride after clear-cutting in the Hubbard Brook sandbox experimentBiogeochemistry632333CrossRefGoogle Scholar
  31. Keene, W.C., Khalil, M.A.K., Erickson, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C.M., Koropalov, V., Barrie, L.A., Li, Y.F. 1999Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventoryJ. Geophys. Res.-Atmos10484298440CrossRefGoogle Scholar
  32. Kirchner, J.W., Feng, X.H., Neal, C. 2000Fractal stream chemistry and its implications for contaminant transport in catchmentsNature403524527CrossRefPubMedGoogle Scholar
  33. Kramer, P.J., Kozlowski, T.T. 1979Physiology of Woody PlantsAcademic Press, Inc.Orlando, FLGoogle Scholar
  34. Likens, G.E., Bormann, F.H., Johnson, N.M., Fisher, D.W., Pierce, R.S. 1970The effect of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystemEcol. Monogr402347Google Scholar
  35. Likens, G.E., Bormann, F.H., Pierce, R.S., Eaton, J.S., Johnson, N.M. 1977Biogeochemistry of a Forested EcosystemSpringer-VerlagNew YorkGoogle Scholar
  36. Likens, G.E., Bormann, F.H., Pierce, R.S., Reiners, W.A. 1978Recovery of a deforested ecosystemScience199492496Google Scholar
  37. Likens, G.E., Driscoll, C.T., Buso, D.C., Siccama, T.G., Johnson, C.E., Lovett, G.M., Ryan, D.F., Fahey, T., Reiners, W.A. 1994The biogeochemistry of potassium at Hubbard BrookBiogeochemistry2561125Google Scholar
  38. Likens, G.E., Bormann, F.H. 1995Biogeochemistry of a Forested EcosystemSpringer-VerlagNew YorkGoogle Scholar
  39. Likens, G.E., Driscoll, C.T., Buso, D.C., Siccama, T.G., Johnson, C.E., Lovett, G.M., Fahey, T.J., Reiners, W.A., Ryan, D.F., Martin, C.W., Bailey, S.W. 1998The biogeochemistry of calcium at Hubbard BrookBiogeochemistry4189173CrossRefGoogle Scholar
  40. Likens, G.E., Butler, T.J., Buso, D.C. 2001Long- and short-term changes in sulfate deposition: effects of the 1990 Clean Air Act AmendmentsBiogeochemistry52111CrossRefGoogle Scholar
  41. Likens, G.E., Driscoll, C.T., Buso, D.C., Mitchell, M.J., Lovett, G.M., Bailey, S.W., Siccama, T.G., Reiners, W.A., Alewell, C. 2002The biogeochemistry of sulfur at Hubbard BrookBiogeochemistry60235316CrossRefGoogle Scholar
  42. Lindberg, S.E., Lovett, G.M. 1992Deposition and canopy interactions of airborne sulfur: results from the Integrated Forest StudyAtmos. Environ26A14771492Google Scholar
  43. Lobert, J.M., Keene, W.C., Logan, J.A., Yevich, R. 1999Global chlorine emissions from biomass burning: reactive chlorine emissions inventoryJ. Geophys. Res.-Atmos10483738389CrossRefGoogle Scholar
  44. Lockwood, P.V., McGarity, J.W., Charley, J.L. 1995Measurement of chemical-weathering rates using natural chloride as a tracerGeoderma64215232CrossRefGoogle Scholar
  45. Lovett, G.M., Hubbell, J.G. 1991Effects of ozone and acid mist on foliar leaching from eastern white pine and sugar mapleCan. J. For. Res21794802Google Scholar
  46. Lovett, G.M. 1994Atmospheric deposition of nutrients and pollutants in North America – an ecological perspectiveEcol. Appl4629650Google Scholar
  47. Lovett, G.M., Nolan, S.S., Driscoll, C.T., Fahey, T.J. 1996Factors regulating throughfall flux in New Hampshire forested landscapeCan. J. For. Res2621342144Google Scholar
  48. Lovett, G.M., Traynor, M.M., Pouyat, R.V., Carreiro, M.M., Zhu, W.X., Baxter, J.W. 2000Atmospheric deposition to oak forests along an urban–rural gradientEnviron. Sci. Technol3442944300CrossRefGoogle Scholar
  49. Marschner, H. 1995Mineral Nutrition of Higher PlantsAcademic PressLondonGoogle Scholar
  50. Martin, C.W., Likens, G.E., Buso, D.C. 2000Comparison of long-term precipitation chemistry measurements at the Hubbard Brook Experimental ForestNew HampshireWater Air Soil Pollut120359379CrossRefGoogle Scholar
  51. McCulloch, A., Aucott, M.L., Benkovitz, C.M., Graedel, T.E., Kleiman, G., Midgley, P.M., Li, Y.F. 1999Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: reactive chlorine emissions inventoryJ. Geophys. Res.-Atmos10483918403CrossRefGoogle Scholar
  52. McDowell, W.H., Likens, G.E. 1988Origin, composition and flux of dissolved organic carbon in the Hubbard Brook valleyEcol. Monogr58177195Google Scholar
  53. Melillo, J.M., Aber, J.D., Muratore, J.F. 1982Nitrogen and lignin control of hardwood leaf litter decomposition dynamicsEcology63621626Google Scholar
  54. Mott, C.J.B. 1981Anion and ligand exchangeGreenland, D.J.Hayes, M.H.B. eds. The Chemistry of Soil ProcessesJohn Wiley and Sons LtdChichesterUK179219Google Scholar
  55. Myneni, S.C.B. 2002Formation of stable chlorinated hydrocarbons in weathering plant materialScience29510391041CrossRefPubMedGoogle Scholar
  56. Neal, C., Kirchner, J.W. 2000Sodium and chloride levels in rainfall, miststreamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controlsHydrol. Earth Sys. Sci4295310Google Scholar
  57. Nodvin, S.C., Driscoll, C.T., Likens, G.E. 1986Simple partitioning of anions and dissolved organic-carbon in a forest soilSoil Sci1422735Google Scholar
  58. Nodvin, S.C., Driscoll, C.T., Likens, G.E. 1988Soil process and sulfate loss at the Hubbard-Brook Experimental ForestBiogeochemistry5185199Google Scholar
  59. Norton, S.A., Handley, M.J., Kahl, J.S., Peters, N.E. 1996Re-evaluation of colorimetric Cl data from natural waters with DOCWater Air Soil Pollut91283298CrossRefGoogle Scholar
  60. Öberg, G., Nordlund, E., Berg, B. 1996In situ formation of organically bound halogens during decomposition of Norway spruce litter – effects of fertilizationCan. J. For. Res2610401048Google Scholar
  61. Oberg, G. 1998Chloride and organic chlorine in soilActa Hydrochem. Hydrobiol26137144CrossRefGoogle Scholar
  62. Oberg, G. 2003The biogeochemistry of chlorine in soilThe Handbook of Environmental ChemistrySpringer-VerlagBerlin4362Google Scholar
  63. Ohrui, K., Mitchell, M.J. 1996Elemental dynamics of a Japanese watershed with sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) plantationsCan. J. For. Res26 21602169Google Scholar
  64. Ortiz-Bermúdez, P., Srebotnik, E., Hammel, K.E. 2003Chlorination and cleavage of ligning structures by fungal chloroperoxidasesAppl. Environ. Microbiol6950155018CrossRefPubMedGoogle Scholar
  65. Peters, N.E. 1991Chloride cycling in two forested lake catchments in the west-central Adirondack Mountains, New York, USAWater Air Soil Pollut59201215CrossRefGoogle Scholar
  66. Peters, N.E., Ratcliffe, E.B. 1998Tracing hydrologic pathways using chloride at the Panola Mountain Research WatershedGeorgiaUSAWater Air Soil Pollut105263275CrossRefGoogle Scholar
  67. Pierce, R.S. 1969Forest transpiration reduction by clearcutting and chemical treatmentNortheastern Weed Control Conf23344349Google Scholar
  68. Reiners, W.A. 199220 Years of ecosystem reorganization following experimental deforestation and regrowth suppressionEcol. Monogr62503523Google Scholar
  69. Rodstedth, M., Stahlberg, C., Sanden, P., Oberg, G. 2003Chloride imbalances in soil lysimetersChemosphere52381389CrossRefPubMedGoogle Scholar
  70. Rosenberry, D.O., Bukaveckas, P.A., Buso, D.C., Likens, G.E., Shapiro, A.M., Winter, T.C. 1999Movement of road salt to a small New Hampshire lakeWater Air Soil Pollut109179206CrossRefGoogle Scholar
  71. Technicon Industrial Systems. Chloride in Water and Wastewater. Industrial Method #99–70W/B.1976. Technicon Industrial Systems, Tarrytown, NY.Google Scholar
  72. Tukey, H.B.J. 1970The leaching of substances from plantsAnnu. Rev. Plant Physiol21305324CrossRefGoogle Scholar
  73. Vitousek, P.M., Reiners, W.A. 1975Ecosystem succession and nutrient retention: a hypothesisBioscience25376356Google Scholar
  74. Webb, J.R., Cosby, B.J., Deviney, F.A., Eshleman, K.N., Galloway, J.N. 1995Change in the acid–base status of an Appalachian catchment following forest defoliation by the gypsy mothWater Air Soil Pollut85535540CrossRefGoogle Scholar
  75. Wedepohl, K.H. 1995The composition of the continental-crustGeochim. Cosmochim. Acta5912171232CrossRefGoogle Scholar
  76. Williams, W.D. 1987Salinization of rivers and streams – an important environmental hazardAmbio16180185Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Gary M. Lovett
    • 1
  • Gene E. Likens
    • 1
  • Donald C. Buso
    • 1
  • Charles T. Driscoll
    • 2
  • Scott W. Bailey
    • 3
  1. 1.Institute of Ecosystem StudiesMillbrookUSA
  2. 2.Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseUSA
  3. 3.Hubbard Brook Experimental ForestUSDA Forest ServiceCamptonUSA

Personalised recommendations