Biogeochemistry

, Volume 72, Issue 1, pp 1–34 | Cite as

Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses

Article

Abstract.

Most techniques for determining the chemical nature of natural organic matter in soil, sediment and water require prior extraction or concentration steps that are not quantitative and that create artifacts. 13C nuclear magnetic resonance (NMR) analysis can avoid these problems, but it gives little information at the scale of molecules. Here we show that the molecular composition of a diverse range of natural organic materials could be inferred from 13C NMR analysis combined with C and N analysis. Forty-six different organic materials including undecomposed and decomposed plant materials, soil organic matter, phytoplankton, and the organic matter found in freshwater, estuarine and marine sediments were examined. A mixing model simultaneously solved a series of equations to estimate the content of four biomolecule components representing the organic materials produced in greatest abundance by plants and other organisms (carbohydrate, protein, lignin and aliphatic material) and two additional components (char and pure carbonyl). Based on defined molecular structures for each component, signal intensities for 13C NMR spectra were predicted and compared with measured values. The sum of the absolute differences in signal intensity between the measured and predicted spectral regions was <7% for the terrestrial materials. For aquatic materials the fit of the predicted to measured signal intensities was not as good. Predicted molecular compositions correlated well with independent analyses of cellulose, protein and lignin contents of plant samples and char contents of soil samples. Across all samples, carbohydrates accounted for 10-76% of the sample C (40-76% in plants and 10-42% in soils, sediments and phytoplankton), protein for 2-80% (21-80% in phytoplankton and marine water column samples and 2-36% in plants, soils and sediments), lignin for 0-36%, aliphatic materials for 2-44%, char for 0-38% and carbonyl for 0-22%. For the soils, sediments and decomposed plant materials, the close correspondence between actual signal intensities and those predicted using known biomolecular components, suggested that either‘8humic’ structures can be approximated by mixtures of common biologically derived molecules or that humic structures did not exist in significant amounts.

Keywords

Humus Molecular composition Nuclear magnetic resonance Organic matter chemistry Sediment Soil 

Abbreviations

CP

cross-polarisation

DP

Direct polarisation

MAS

magic-angle-spinning

NMR

nuclear magnetic resonance

UV NMR

ultra-violet photo-oxidation of the <53 µ m fraction followed by 13C NMR analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldock J.A. and Nelson P.N. In: Sumner M. (ed), Handbook of Soil Science. CRC Press, Boca Raton, FL, USA, pp. B25-B84Google Scholar
  2. Baldock J.A. and Skjemstad J.O. In: Peverill K.I.Sparrow L.A. and Reuter D.J. (eds), Soil Analysis: An Interpretation Manual. CSIRO Publishing, Collingswood, Vic, Australia, pp. 159-170.Google Scholar
  3. Baldock, J.A., Smernik, R.J. 2002Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) woodOrg. Geochem.3310931109Google Scholar
  4. Baldock, J.A., Kay, B.D., Schnitzer, M. 1987Influence of cropping treatments on the monosaccharide content of the hydrolysates of a soil and its aggregate fractionsCan. J. Soil Sci.67489499Google Scholar
  5. Baldock, J.A., Oades, J.M., Waters, A.G., Peng, X., Vassallo, A.M., Wilson, M.A. 1992Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopyBio-geochemistry16142Google Scholar
  6. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A., Clarke, P. 1997aAssessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopyAust. J. Soil Res.3510611084Google Scholar
  7. Baldock, J.A., Sewell, T., Hatcher, P.G. 1997b

    Decomposition induced changes in the chemical structure of fallen red pinewhite spruce and tamarack logs

    Cadisch, G.Giller, K.E. eds. Driven by Nature: Plant Litter Quality and DecompositionCAB InternationalWallingfordUK7583
    Google Scholar
  8. Beavis, J., Mott, C.J.B. 1996Effects of land use on the amino acid composition of soils: 1. Manured and unmanured soils from the Broadbalk continuous wheat experimentRothamstedEnglandGeo-derma72259270Google Scholar
  9. Beavis, J., Mott, C.J.B. 1999Effects of land use on the amino acid composition of soils: 2. Soils from the Park Grass experiment and Broadbalk Wilderness, RothamstedEnglandGeoderma91173190Google Scholar
  10. Cortez, J., Demard, J.M., Bottner, P., Monrozier, L.J. 1996Decomposition of Mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter qualitySoil Biol. Biochem.28443452Google Scholar
  11. Cowie, G.L., Hedges, J.I. 1992Sources and reactivities of amino acids in a coastal marine environmentLimnol. Oceanogr.37703714Google Scholar
  12. DiCosty, R.J., Weliky, D.P., Anderson, S.J., Paul, E.A. 200315N-CPMAS nuclear magnetic resonance spectroscopy and biological stability of soil organic nitrogen in whole soil and particle-size fractionsOrg. Geochem.3416351650Google Scholar
  13. Gélinas, Y., Baldock, J.A., Hedges, J.I. 2001Demineralization of marine and freshwater sediments for CP/MAS 13C NMR analysisOrg. Geochem.32677693Google Scholar
  14. Goering H.K. and van Soest P.J. 1972. Forage fibre analyses (apparatus, reagents, procedures and some applications). Agriculture Handbook No. 379. United States Department of Agriculture.Google Scholar
  15. Gustafsson, Ö., Gschwend, P.M. 1998The flux of black carbon to surface sediments on the New England continental shelfGeochim. Cosmochim. Acta62465472Google Scholar
  16. Hamadi, Z., Steinberger, Y., Kutiel, P., Lavee, H., Barness, G. 2000Decomposition of Avena sterilis litter under arid conditionsJ. Arid Environ.46281293Google Scholar
  17. Hatcher, P.G., Spiker, E.C. 1988

    Selective degradation of plant biomolecules

    Frimmel, F.H.Christman, R.F. eds. Humic Substances and Their Role in the EnvironmentJohn Wiley and SonsNew York, NY, USA5974
    Google Scholar
  18. Hatcher, P.G., Nanny, M.A., Minard, R.D., Dible, S.D., Carson, D.M. 1995Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH)Org. Geochem.23881888Google Scholar
  19. Hedges, J.I. 1988

    Polymerization of humic substances in natural environments

    Frimmel, F.H.Christman, R.F. eds. Humic Substances and Their Role in the EnvironmentJohn Wiley and SonsNew York, NY, USA4558
    Google Scholar
  20. Hedges, J.I., Ertel, J.R. 1982Characterization of lignin by gas capillary chromatography of cupric oxide oxidation productsAnal. Chem.54174178Google Scholar
  21. Hedges, J.I., Baldock, J.A., Genas, Y., Lee, C., Peterson, M., Wakeham, S.G. 2001Evidence for non-selective preservation of organic matter in sinking marine particlesNature409801804PubMedGoogle Scholar
  22. Hedges, J.I., Baldock, J.A., Genas, Y., Lee, C., Peterson, M.L., Wakeham, S.G. 2002The biochemical and elemental compositions of marine plankton: a NMR perspectiveMar. Chem.784763Google Scholar
  23. Heng, S., Goh, K.M. 1981A rapid method for extracting lipid components from forest litter especially adapted for ecological studiesCommun. Soil Sci. Plant Anal.1212831292Google Scholar
  24. Kinchesh, P., Powlson, D.S., Randall, E.W. 1995a13C NMR studies of organic matter in whole soils: I. Quantitation possibilitiesEur. J. Soil Sci.46125138Google Scholar
  25. Kinchesh, P., Powlson, D.S., Randall, E.W. 1995b13C NMR studies of organic matter in whole soils: II. A case study of some Rothamsted soilsEur. J. Soil Sci.46139146Google Scholar
  26. Knicker, H., Ln, H.D. 1995N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradationOrg. Geochem.23329341Google Scholar
  27. Knicker, H., Almendros, G., Gonz z-vila, F.J., Ln, H.-D., Martin, F. 199513C and 15N NMR analysis of some fungal melanins in comparison with soil organic matterOrg. Geochem.2310231028Google Scholar
  28. K, I., Hempfling, R., Zech, W., Hatcher, P.G., Schulten, H.-R. 1988Chemical composition of the organic matter in forest soils 1. Forest litterSoil Sci.146124136Google Scholar
  29. K-Knabner, I., Zech, W., Hatcher, P.G. 1988Chemical composition of the organic matter in forest soils: The humus layerZ. Pflanzener. Boden.151331340Google Scholar
  30. K-Knabner, I., Hatcher, P.G., Tegelarr, E.W., de Leeuw, J.W. 1992Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysisSci. Total Environ.11389106Google Scholar
  31. Kolattukudy, P.E. 1980

    Cutin, suberin and waxes

    Stumpf, P.K.Conn, E.E. eds. The Biochemistry of Plants. Vol. 4. LipidsAcademic PressNew York, NY, USA571638
    Google Scholar
  32. Ladd, J.N., van Gestel, M., Jocteur Monrozier, L., Amato, M. 1996Distribution of organic 14C and 15N in particle-size fractions of soils incubated with 14C, 15N-labelled glucose/NH4and legume and wheat straw residuesSoil Biol. Biochem.28893905Google Scholar
  33. Lee, C., Murray, D.W., Barber, R.T., Buesseler, K.O., Dymond, J., Hedges, J.I., Honjo, S., Manganini, S.J., Marra, J., Moser, C., Perterson, M.L., Prell, W.L., Wakeham, S.G. 1998Particulate organic carbon fluxes: compilation of results from the 1995 US JGOFS Arabian Sea Process StudyDeep-Sea Res. Pt. II4524892501Google Scholar
  34. Levy, G.C., Litcher, R.L., Nelson, G.L. 1980Carbon-13 Nuclear Magnetic Resonance Spectroscopy. 2nd edJohn Wiley and SonsNew York, NY, USAGoogle Scholar
  35. Lowry, J.B., Conlan, L.L., Schlink, A.C., McSweeny, C.S. 1994Acid detergent dispersible lignin in tropical grassesJ. Sci. Food Agric.654149Google Scholar
  36. MacCarthy, P., Malcolm, R.L., Clapp, C.E., Bloom, P.R. 1990

    An introduction to soil humic substances

    MacCarthy, P.Malcolm, R.L.Clapp, C.E.Bloom, P.R. eds. Humic Substances in Crop and Soil Sciences: Selected ReadingsSoil Science Society of AmericaMadison, WI, USA112
    Google Scholar
  37. Ma’shum, M., Tate, M.E., Jones, G.P., Oades, J.M. 1988Extraction and characterisation of water repellent materials from Australian soilsJ. Soil Sci.3999110Google Scholar
  38. Muzzarelli, R.A.A., Muzzarelli, C. 1998

    Native and modified chitins in the biosphere

    Stankiewicz, B.A.van Bergen, P.F. eds. Nitrogen-Containing Macromolecules in the Bio- and GeosphereAmerican Chemical SocietyWashington, DC, USA148162
    Google Scholar
  39. Nelson, P.N., Baldock, J.A., Clarke, P., Oades, J.M., Churchman, G.J. 1999Dispersed clay and organic matter in soil: their nature and associationsAust. J. Soil Res.37289315Google Scholar
  40. Oades, J.M. 1984Soil organic matter and structural stability: mechanisms and implications for managementPlant Soil76319337Google Scholar
  41. Ogner, G. 1985A comparison of four different raw humus types in Norway using chemical degradations and CPMAS 13C NMR spectroscopyGeoderma35343353Google Scholar
  42. Preston, C.M., Trofymow, J.A., Sayer, B.G., Niu, J. 199713C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studiesCan. J. Bot.7516011613Google Scholar
  43. Quideau, S.A., Anderson, M.A., Graham, R.C., Chadwick, O.A., Trumbore, S.E. 2000Soil organic matter processes: characterization by 13C NMR and 14C measurementsFor. Ecol. Manag.1381927Google Scholar
  44. Quideau, S.A., Chadwick, O.A., Benesi, A., Graham, R.C., Anderson, M.A. 2001A direct link between forest vegetation type and soil organic matter compositionGeoderma1044160Google Scholar
  45. Reeves, A.D. 1995The use of organic markers in the differentiation of organic inputs to aquatic systemsPhys. Chem. Earth20133140Google Scholar
  46. Sariyildiz, T., Anderson, J.M. 2003Interactions between litter quality, decomposition and soil fertility: a laboratory studySoil Biol. Biochem.35391399Google Scholar
  47. Schulten, H.-R., Schnitzer, M. 1993A state of the art structural concept for humic substancesNaturwissenschaften802930Google Scholar
  48. Skjemstad, J.O., Clarke, P., Taylor, J.A., Oades, J.M., Newman, R.H. 1994The removal of magnetic materials from surface soils-a solid-state C-13 CP/MAS NMR studyAust. J. Soil Res.3212151229Google Scholar
  49. Skjemstad, J.O., Taylor, J.A., Smernik, R.J. 1999bEstimation of charcoal (char) in soilsCommun. Soil Sci. Plant Anal.3022832298Google Scholar
  50. Skjemstad, J.O., Reicosky, D.C., Wilts, A.R., McGowan, J.A. 2002Charcoal carbon in US agricultural soilsSoil Sci. Soc. Am. J.6612491255Google Scholar
  51. Smernik, R.J., Oades, J.M. 2000aThe use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 1. Model systems and the effects of paramagnetic impuritiesGeoderma96101129Google Scholar
  52. Smernik, R.J., Oades, J.M. 2000bThe use of spin counting for determining quantitation in solid state 13C NMR spectra of natural organic matter. 2. HF-treated soil fractionsGeoderma96159171Google Scholar
  53. Smernik, R., Baldock, J.A., Oades, J.M., Whittaker, A.K. 2002aDetermination of T1?H relaxation rates in charred and uncharred wood and consequences for NMR quantitationSolid State Nucl. Mag. Res.225070Google Scholar
  54. Smernik, R., Baldock, J.A., Oades, J.M. 2002bImpact of remote protonation on 13C CPMAS NMR quantitation of charred and uncharred woodSolid State Nucl. Mag. Res.227182Google Scholar
  55. Stevenson, F.J. 1994Humus Chemistry. Genesis, Composition and ReactionsJohn Wiley and SonsNew York, NY, USAGoogle Scholar
  56. Tian, X., Takeda, H., Azuma, J. 2000Dynamics of organic-chemical components in leaf litters during a 3.5-year decompositionEur. J. Soil Biol.368189Google Scholar
  57. Wakeham, S.G., Lee, C., Hedges, J.I., Hernes, P.J., Peterson, M.L. 1997Molecular indicators of diagenetic status in marine organic matterGeochim. Cosmochim. Acta6153635369Google Scholar
  58. Waksman, S.A. 1936Humus. Origin, Chemical Composition, and Importance in NatureBalliereTindall and CoxLondon, UKGoogle Scholar
  59. Wilson, M.A. 1987N.M.R. Techniques and Applications in Geochemistry and Soil ChemistryPergamon PressOxfordUKGoogle Scholar
  60. Wu, Q.-L., Schleuss, U., Blume, H.P. 1995Investigation on soil lipid extraction with different organic solventsZ. Pflanzener. Boden.158347350Google Scholar
  61. Zelibor, J.L., Romankiw, L., Hatcher, P.G., Colwell, R.R. 1988Comparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposition residues by 13C nuclear magnetic resonance spectroscopyAppl. Envion. Microb.5410511060Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.James Cook UniversityCairnsAustralia
  2. 2.CSIRO Land and Water/CRC for Greenhouse AccountingGlen OsmondAustralia

Personalised recommendations