Advertisement

Methane oxidation coupled to vanadate reduction in a membrane biofilm batch reactor under hypoxic condition

  • Zhen Wang
  • Ling-Dong Shi
  • Chun-Yu LaiEmail author
  • He-Ping ZhaoEmail author
Original Paper

Abstract

This study shows vanadate (V(V)) reduction in a methane (CH4) based membrane biofilm batch reactor when the concentration of dissolved oxygen (O2) was extremely low. V(IV) was the dominant products formed from V(V) bio-reduction, and majority of produced V(IV) transformed into precipitates with green color. Quantitative polymerase chain reaction and Illumina sequencing analysis showed that archaea methanosarcina were significantly enriched. Metagenomic predictive analysis further showed the enrichment of genes associated with reverse methanogenesis pathway, the key CH4-activating mechanism for anaerobic methane oxidation (AnMO), as well as the enrichment of genes related to acetate synthesis, in archaea. The enrichment of aerobic methanotrophs Methylococcus and Methylomonas implied their role in CH4 activation using trace level of O2, or their participation in V(V) reduction.

Keywords

Methane oxidation Vanadate reduction Membrane biofilm batch reactor Hypoxic condition 

Notes

Acknowledgements

Authors greatly thank the “Natural Science Funds for Distinguished Young Scholar of Zhejiang Province (LR17B070001)”, “National Natural Science Foundation of China (Grant Nos. 21577123, 51878596)” and the “National Key Technology R&D Program (2018YFC1802203)” for their financial support.

Supplementary material

10532_2019_9887_MOESM1_ESM.docx (389 kb)
Supplementary material 1 (DOCX 389 kb)

References

  1. Altamirano-Lozano M (1998) Genotoxic effects of vanadium compounds. Invest Clin 39(Suppl 1):39–47Google Scholar
  2. Antipov AN, Khijiniak TN (2016) Vanadate reduction under alkaline conditions by haloalkaliphilic Halomonas strains. Microbiology 85:658–663.  https://doi.org/10.1134/s0026261716060023 CrossRefGoogle Scholar
  3. Bar-Or I, Elvert M, Eckert W, Kushmaro A, Vigderovich H, Zhu Q, Ben-Dov E, Sivan O (2017) Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals. Environ Sci Technol 51:12293–12301.  https://doi.org/10.1021/acs.est.7b03126 CrossRefGoogle Scholar
  4. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187.  https://doi.org/10.1126/science.1169984 CrossRefGoogle Scholar
  5. Beck JC, Rosen BP (1979) Cation/proton antiport systems in Escherichia coli: properties of the sodium/proton antiporter. Arch Biochem Biophys 194:208–214.  https://doi.org/10.1016/0003-9861(79)90611-8 CrossRefGoogle Scholar
  6. Blackmore DPT, Ellis J, Riley PJ (1996) Treatment of a vanadium-containing effluent by adsorption/coprecipitation with iron oxyhydroxide. Water Res 30:2512–2516.  https://doi.org/10.1016/0043-1354(96)00080-2 CrossRefGoogle Scholar
  7. Boden R, Murrell JC (2011) Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 324:106–110.  https://doi.org/10.1111/j.1574-6968.2011.02395.x CrossRefGoogle Scholar
  8. Bosch H, Bongers A, Enoch G, Snel R, Ross JRH (1989) Lithium-vanadium bronzes as model catalysts for the selective reduction of nitric oxide. Catal Today 4:139–154.  https://doi.org/10.1016/0920-5861(89)85047-3 CrossRefGoogle Scholar
  9. Carpentier W, Sandra K, Smet ID, Brigé A, Smet LD, Beeumen JV (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639.  https://doi.org/10.1128/AEM.69.6.3636-3639.2003 CrossRefGoogle Scholar
  10. Ceccarelli M, Galluzzi L, Migliazzo A, Magnani M (2014) Detection and characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA. PLoS ONE 9:e88845.  https://doi.org/10.1371/journal.pone.0088845 CrossRefGoogle Scholar
  11. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902.  https://doi.org/10.1021/cr020607t CrossRefGoogle Scholar
  12. Danilova OV, Suzina NE, Van De Kamp J, Svenning MM, Bodrossy L, Dedysh SN (2016) A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments. ISME J 10:2734–2743.  https://doi.org/10.1038/ismej.2016.48 CrossRefGoogle Scholar
  13. de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429.  https://doi.org/10.1016/j.cej.2013.09.006 CrossRefGoogle Scholar
  14. Ensafi AA, Amini MK, Mazloum M (1999) Spectrophotometric reaction rate method for the determination of trace amounts of vanadium(V) by its catalytic effect on the oxidation of Nile blue with bromate. Anal Lett 32:1927–1937.  https://doi.org/10.1080/00032719908542943 CrossRefGoogle Scholar
  15. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548.  https://doi.org/10.1038/nature08883 CrossRefGoogle Scholar
  16. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. PNAS 113:12792–12796.  https://doi.org/10.1073/pnas.1609534113 CrossRefGoogle Scholar
  17. Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88.  https://doi.org/10.1016/j.soilbio.2011.11.016 CrossRefGoogle Scholar
  18. Gupta CK, Krishnamurthy N (1992) Extractive metallurgy of vanadium (process metallurgy). Elsevier, DuivendrechtGoogle Scholar
  19. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570.  https://doi.org/10.1038/nature12375 CrossRefGoogle Scholar
  20. Keränen A, Leiviskä T, Salakka A, Tanskanen J (2015) Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon. Desalin Water Treat 53:2645–2654.  https://doi.org/10.1080/19443994.2013.868832 CrossRefGoogle Scholar
  21. Kim BK, Pihl TD, Reeve JN, Daniels L (1995) Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. J Bacteriol 177:7178–7185.  https://doi.org/10.1128/jb.177.24.7178-7185.1995 CrossRefGoogle Scholar
  22. Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 17:3219–3232.  https://doi.org/10.1111/1462-2920.12772 CrossRefGoogle Scholar
  23. Lai C-Y, Yang X, Tang Y, Rittmann BE, Zhao H-P (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48:3395–3402.  https://doi.org/10.1021/es4053939 CrossRefGoogle Scholar
  24. Lai C-Y, Wen L-L, Shi L-D, Zhao K-K, Wang Y-Q, Yang X, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao H-P (2016a) Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor. Environ Sci Technol 50:10179–10186.  https://doi.org/10.1021/acs.est.6b02807 CrossRefGoogle Scholar
  25. Lai C-Y, Zhong L, Zhang Y, Chen J-X, Wen L-L, Shi L-D, Sun Y-P, Ma F, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao H-P (2016b) Bioreduction of chromate in a methane-based membrane biofilm reactor. Environ Sci Technol 50:5832–5839.  https://doi.org/10.1021/acs.est.5b06177 CrossRefGoogle Scholar
  26. Lai C-Y, Dong Q-Y, Chen J-X, Zhu Q-S, Yang X, Chen W-D, Zhao H-P, Zhu L (2018a) Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environ Sci Technol 52:10680–10688.  https://doi.org/10.1021/acs.est.8b02374 CrossRefGoogle Scholar
  27. Lai C-Y, Dong Q-Y, Rittmann BE, Zhao H-P (2018b) Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor. Environ Sci Technol 52:8693–8700.  https://doi.org/10.1021/acs.est.8b02035 CrossRefGoogle Scholar
  28. Lai C-Y, Lv P-L, Dong Q-Y, Yeo SL, Rittmann BE, Zhao H-P (2018c) Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor. Environ Sci Technol 52:7024–7031.  https://doi.org/10.1021/acs.est.8b00152 CrossRefGoogle Scholar
  29. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821.  https://doi.org/10.1038/nbt.2676 CrossRefGoogle Scholar
  30. Liu D, Dong HL, Bishop ME, Wang HM, Agrawal A, Tritschler S, Eberl DD, Xie SC (2011) Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim Cosmochim Acta 75:1057–1071.  https://doi.org/10.1016/j.gca.2010.11.009 CrossRefGoogle Scholar
  31. Lu Y-Z, Fu L, Ding J, Ding Z-W, Li N, Zeng RJ (2016) Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Res 102:445–452.  https://doi.org/10.1016/j.watres.2016.06.065 CrossRefGoogle Scholar
  32. Luo Y-H, Chen R, Wen L-L, Meng F, Zhang Y, Lai C-Y, Rittmann BE, Zhao H-P, Zheng P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49:2341–2349.  https://doi.org/10.1021/es504990m CrossRefGoogle Scholar
  33. Lv P-L, Shi L-D, Wang Z, Rittmann B-E, Zhao H-P (2019) Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor. Sci Total Environ 667:9–15.  https://doi.org/10.1016/j.scitotenv.2019.02.330 CrossRefGoogle Scholar
  34. Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, Arai H, Tanimoto I, Nishimura F, Takashiba S (2003) Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol Med Microbiol 39:81–86.  https://doi.org/10.1016/S0928-8244(03)00224-4 CrossRefGoogle Scholar
  35. Martinez-Cruz K, Leewis M-C, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607–608:23–31.  https://doi.org/10.1016/j.scitotenv.2017.06.187 CrossRefGoogle Scholar
  36. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439.  https://doi.org/10.1111/j.1462-2920.2009.02083.x CrossRefGoogle Scholar
  37. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546.  https://doi.org/10.1038/nature11656 CrossRefGoogle Scholar
  38. Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738.  https://doi.org/10.1016/j.watres.2007.02.053 CrossRefGoogle Scholar
  39. Myers JM, Antholine WE, Myers CR (2004) Vanadium(V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl Environ Microbiol 70:1405–1412.  https://doi.org/10.1128/AEM.70.3.1405-1412.2004 CrossRefGoogle Scholar
  40. Naeem A, Westerhoff P, Mustafa S (2007) Vanadium removal by metal (hydr)oxide adsorbents. Water Res 41:1596–1602.  https://doi.org/10.1016/j.watres.2007.01.002 CrossRefGoogle Scholar
  41. Nriagu JO (1998) Vanadium in the environment (Part 1, Chemistry and biochemistry). Advances in environmental science and technology. Wiley, New YorkGoogle Scholar
  42. Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095.  https://doi.org/10.1128/AEM.70.5.3091-3095.2004 CrossRefGoogle Scholar
  43. Patel B, Haswell SJ, Grzeskowiak R (1989) Flow injection flame atomic absorption spectrometry system for the pre-concentration of vanadium(V) and characterisation of vanadium(IV) and -(V) species. J Anal At Spectrom 4:195–198.  https://doi.org/10.1039/JA9890400195 CrossRefGoogle Scholar
  44. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, den Camp HJMO, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918.  https://doi.org/10.1038/nature04617 CrossRefGoogle Scholar
  45. Rittmann BE, McCarty PL (2012) Environmental biotechnology: principles and applications. Tata McGraw-Hill Education, New DelhiGoogle Scholar
  46. Rotaru A-E, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605.  https://doi.org/10.1128/AEM.00895-14 CrossRefGoogle Scholar
  47. Safavi A, Hormozi Nezhad MR, Shams E (2000) Highly selective and sensitive kinetic spectrophotometric determination of vanadium(IV) in the presence of vanadium(V). Anal Chim Acta 409:283–289.  https://doi.org/10.1016/S0003-2670(99)00794-1 CrossRefGoogle Scholar
  48. Sheehan R, McCarver AC, Isom CE, Karr EA, Lessner DJ (2015) The Methanosarcina acetivorans thioredoxin system activates DNA binding of the redox-sensitive transcriptional regulator MsvR. J Ind Microbiol Biotechnol 42:965–969.  https://doi.org/10.1007/s10295-015-1592-y CrossRefGoogle Scholar
  49. Siniscalchi LAB, Leite LR, Oliveira G, Chernicharo CAL, de Araújo JC (2017) Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs. Environ Sci Pollut Res 24:16751–16764.  https://doi.org/10.1007/s11356-017-9197-9 CrossRefGoogle Scholar
  50. Standardization Administration of People’s Republic of China (2006) Standard for drinking water quality: GB5749-2006. Standards Press of China, BeijingGoogle Scholar
  51. Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705.  https://doi.org/10.1126/science.286.5445.1700 CrossRefGoogle Scholar
  52. Wright MT, Belitz K (2010) Factors controlling the regional distribution of vanadium in groundwater. Groundwater 48:515–525.  https://doi.org/10.1111/j.1745-6584.2009.00666.x CrossRefGoogle Scholar
  53. Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, Huang G, Li Y, Yan Q, Wu S, Wang X, Chen S, He G, Xiao X, Xu A (2011) Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. ISME J 5:414–426.  https://doi.org/10.1038/ismej.2010.144 CrossRefGoogle Scholar
  54. Xu X, Xia S, Zhou L, Zhang Z, Rittmann BE (2015) Bioreduction of vanadium(V) in groundwater by autohydrogentrophic bacteria: mechanisms and microorganisms. J Environ Sci 30:122–128.  https://doi.org/10.1016/j.jes.2014.10.011 CrossRefGoogle Scholar
  55. Yoo JS (1998) Metal recovery and rejuvenation of metal-loaded spent catalysts. Catal Today 44:27–46.  https://doi.org/10.1016/S0920-5861(98)00171-0 CrossRefGoogle Scholar
  56. Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679.  https://doi.org/10.1002/bit.20347 CrossRefGoogle Scholar
  57. Zhang J, Dong H, Zhao L, McCarrick R, Agrawal A (2014) Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chem Geol 370:29–39.  https://doi.org/10.1016/j.chemgeo.2014.01.014 CrossRefGoogle Scholar
  58. Zhang BG, Qiu R, Lu L, Chen X, He C, Lu JP, Ren ZJ (2018) Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent iron. Environ Sci Technol 52:7434–7442CrossRefGoogle Scholar
  59. Zhang B, Wang S, Diao M, Fu J, Xie M, Shi J, Liu Z, Jiang Y, Cao X, Borthwick AGL (2019a) Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment. J Geophys Res Biogeosci 124:601–615.  https://doi.org/10.1029/2018JG004670 CrossRefGoogle Scholar
  60. Zhang BG, Cheng YT, Shi JX, Xing X, Zhu YL, Xu N, Xia JX, Borthwick AGL (2019b) Insights into interactions between vanadium (V) bio-reduction and pentachlorophenol dechlorination in synthetic groundwater. Chem Eng Sci 375:121965CrossRefGoogle Scholar
  61. Zhao H-P, Van Ginkel S, Tang Y, Kang D-W, Rittmann B, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45:10155–10162.  https://doi.org/10.1021/es202569b CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource ScienceZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Province Key Laboratory for Water Pollution Control and Environmental SafetyZhejiang UniversityHangzhouChina
  3. 3.Advanced Water Management CentreThe University of QueenslandSt. LuciaAustralia

Personalised recommendations