Advertisement

Biodegradation

, Volume 30, Issue 4, pp 259–272 | Cite as

Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils

  • Oumaima Zouari
  • Didier LecouturierEmail author
  • Alice Rochex
  • Gabrielle Chataigne
  • Pascal Dhulster
  • Philippe Jacques
  • Dhouha Ghribi
Original Paper

Abstract

Pseudomonas strains isolated from oil contaminated soils were screened for biosurfactant production. Three out of eleven Pseudomonas isolates were selected for their high emulsifying activity (E24 value on n-hexadecane ~ 78%). These isolates (E39, E311 and E313) were identified as members of the P. putida group using phenotypical methods and a molecular approach. To identify the chemical nature of produced biosurfactants, thin layer chromatography and MALDI-ToF mass spectrometry analysis were carried out and revealed lipopeptides belonging to the syringafactin family. The activity of the produced biosurfactants was stable over a pH range of 6–12, at high salinity (10%) and after heating at 80 °C. Tests in contaminated sand micro-bioreactors showed that the three strains were able to degrade diesel. These results suggest the potential of these syringafactin producing strains for application in hydrocarbon bioremediation.

Keywords

Pseudomonas Biosurfactant Bioemulsifier Biodegradation Lipopeptide 

Notes

Acknowledgements

This work was funded by the Ministry of Higher Education and Scientific Research of Tunisia and a scholarship from the region Hauts-de-France. This work was supported by the European Union SMARTBIOCONTROLPORTFOLIO-Interreg FWVLBIOPROD program, the FEDER program ALIBIOTECH and the CPER project ALIBIOTECH from the region Hauts-de-France. The authors are grateful to the Advanced High Throughput Technologies Platform for Biorefineries Catalysts Design ‘REALCAT’ for allowing the implementation of MALDI-ToF mass spectrometry analysis. The authors are grateful to Kamel Maaloul, translator and English professor for having proofread the manuscript.

References

  1. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 157:329–345CrossRefPubMedGoogle Scholar
  2. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anyanwu CU, Obi SKC, Okolo BN (2011) Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil. J Appl Sci Res 7:79–87Google Scholar
  4. Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf B Biointerfaces 95:23–29.  https://doi.org/10.1016/j.colsurfb.2012.01.043 CrossRefPubMedGoogle Scholar
  5. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494CrossRefPubMedGoogle Scholar
  6. Bak F, Bonnichsen L, Jørgensen NO, Nicolaisen MH, Nybroe O (2015) The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biot 99:1475–1483CrossRefGoogle Scholar
  7. Bento FM, De Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255.  https://doi.org/10.1016/j.micres.2004.08.005 CrossRefGoogle Scholar
  8. Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323.  https://doi.org/10.1128/JB.00725-07 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Meth 32:273–280.  https://doi.org/10.1016/S0167-7012(98)00031-1 CrossRefGoogle Scholar
  10. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287.  https://doi.org/10.1128/AEM.69.6.3280-3287.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266CrossRefPubMedGoogle Scholar
  12. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116CrossRefGoogle Scholar
  13. Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29:1097–1108.  https://doi.org/10.1002/btpr.1796 CrossRefPubMedGoogle Scholar
  14. Chakraborty T, Chakraborty I, Ghosh S (2011) The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab J Chem 4:265–270.  https://doi.org/10.1016/j.arabjc.2010.06.045 CrossRefGoogle Scholar
  15. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229.PubMedPubMedCentralGoogle Scholar
  16. Cooper DG, Zajic JE (1980) Surface-active compounds from microorganisms. Adv Appl Microbiol 26:229–253.  https://doi.org/10.1016/S0065-2164(08)70335-6 CrossRefGoogle Scholar
  17. D’aes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2:359–372.  https://doi.org/10.1111/j.1758-2229.2009.00104.x CrossRefPubMedGoogle Scholar
  18. Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345.  https://doi.org/10.1016/j.biortech.2006.05.032 CrossRefPubMedGoogle Scholar
  19. de Sousa T, Bhosle S (2012) Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem. Bioresour Technol 123:256–262.  https://doi.org/10.1016/j.biortech.2012.07.056 CrossRefPubMedGoogle Scholar
  20. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64.  https://doi.org/10.1016/S0140-6701(97)84559-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. El Arbi A, Rochex A, Chataigné G, Béchet M, Lecouturier D, Arnauld S, Gharsallah N, Jacques P (2016) The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Res Microbiol 167:46–57.  https://doi.org/10.1016/j.resmic.2015.09.003 CrossRefPubMedGoogle Scholar
  22. Fechtner J, Koza A, Sterpaio PD, Hapca SM, Spiers AJ (2011) Surfactants expressed by soil pseudomonads alter local soil–water distribution, suggesting a hydrological role for these compounds. FEMS Microbiol Ecol 78:50–58.  https://doi.org/10.1111/j.1574-6941.2011.01141.x CrossRefPubMedGoogle Scholar
  23. Gao J, Xie G, Peng F, Xie Z (2015) Pseudomonas donghuensis sp. nov., exhibiting high-yields of siderophore. Antonie Van Leeuwenhoek 107:83–94.  https://doi.org/10.1007/s10482-014-0306-1 CrossRefPubMedGoogle Scholar
  24. Gomila M, Pena A, Mulet M, Lalucat J, García-Valdés E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00214 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Janek T, Łukaszewicz M, Rezanka T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 101:6118–6123CrossRefPubMedGoogle Scholar
  26. Janek T, Lukaszewicz M, Krasowska A (2013) Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloid Surf B 110:379–386CrossRefGoogle Scholar
  27. Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–126Google Scholar
  28. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285:198–204.  https://doi.org/10.1016/j.desal.2011.10.002 CrossRefGoogle Scholar
  29. Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556CrossRefPubMedGoogle Scholar
  30. Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GE, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113CrossRefPubMedGoogle Scholar
  31. Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20CrossRefGoogle Scholar
  32. Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biot 51:22–32CrossRefGoogle Scholar
  33. Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565CrossRefPubMedGoogle Scholar
  34. Martinez-Toledo A, Rios-Leal E, Vázquez-Duhalt R, González-Chávez MDC, Esparza-Garcia JF, Rodriguez-Vazquez R (2006) Role of phenanthrene in rhamnolipid production by P. putida in different media. Environ Technol 27:137–142CrossRefPubMedGoogle Scholar
  35. Merino E, Barrientos A, Rodríguez J, Naharro G, Luengo JM, Olivera ER (2013) Isolation of cholesterol-and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biot 97:891–904CrossRefGoogle Scholar
  36. Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81.  https://doi.org/10.1016/j.psep.2017.02.002 CrossRefGoogle Scholar
  37. Mohammed IU, Deeni Y, Hapca SM, McLaughlin K, Spiers AJ (2015) Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants. Lett Appl Microbiol 60:37–43.  https://doi.org/10.1111/lam.12331 CrossRefPubMedGoogle Scholar
  38. Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466CrossRefPubMedPubMedCentralGoogle Scholar
  39. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure–function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488:211–218.  https://doi.org/10.1016/S1388-1981(00)00124-4 CrossRefPubMedGoogle Scholar
  40. Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45:330–335.  https://doi.org/10.1111/j.1472-765X.2007.02197.x CrossRefPubMedGoogle Scholar
  41. Mulet M, Sánchez D, Lalucat J, Lee K, Garcia-Valdes E (2015) Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. Int J Syst Evol Microbiol 65:4013–4018.  https://doi.org/10.1099/ijsem.0.000529 CrossRefPubMedGoogle Scholar
  42. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162:366–380CrossRefPubMedGoogle Scholar
  43. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  44. Neu TR, Härtner T, Poralla K (1990) Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biot 32:518–520Google Scholar
  45. Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microb 68:3416–3423CrossRefGoogle Scholar
  46. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654.  https://doi.org/10.3390/ijms12010633 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pacwa-Płociniczak M, Płaza GA, Poliwoda A, Piotrowska-Seget Z (2014) Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ Sci Pollut R 21:9385–9395CrossRefGoogle Scholar
  48. Pauwelyn E, Huang C-J, Ongena M, Leclère V, Jacques P, Bleyaert P, Budzikiewicz H, Schaefer M, Höfte M (2013) New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. Mol Plant Microbe Interact 26:585–598.  https://doi.org/10.1094/MPMI-11-12-0258-R CrossRefPubMedGoogle Scholar
  49. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563.  https://doi.org/10.1007/s002530051432 CrossRefGoogle Scholar
  50. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062.  https://doi.org/10.1111/j.1574-6976.2010.00221.x CrossRefPubMedGoogle Scholar
  51. Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85:257–261.  https://doi.org/10.1016/S0960-8524(02)00119-0 CrossRefPubMedGoogle Scholar
  52. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618CrossRefPubMedGoogle Scholar
  53. Rokni-Zadeh H, Li W, Sanchez-Rodriguez A, Sinnaeve D, Rozenski J, Martins JC, De Mot R (2012) Genetic and functional characterization of cyclic lipopeptide WLIP production by rice rhizosphere isolate Pseudomonas putida RW10S2. Appl Environ Microb 78:4826–4834CrossRefGoogle Scholar
  54. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236CrossRefPubMedGoogle Scholar
  55. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252CrossRefPubMedGoogle Scholar
  56. Roongsawang N, Washio K, Morikawa M (2011) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172CrossRefGoogle Scholar
  57. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016.  https://doi.org/10.1007/s00253-012-4641-8 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Saikia RR, Deka S, Deka M, Banat IM (2012) Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann Microbiol 62:753–763.  https://doi.org/10.1007/s13213-011-0315-5 CrossRefGoogle Scholar
  59. Tuleva B, Christova N, Jordanov B et al (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Zeitschrift fur Naturforsch 60:577–582CrossRefGoogle Scholar
  60. Tvrzova L, Schumann P, Spröer C, Sedláček I, Páčová Z, Sedo O, Zdrahal Z, Steffen M, Lang E (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 56:2657–2663CrossRefPubMedGoogle Scholar
  61. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620CrossRefPubMedGoogle Scholar
  62. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated. Appl Environ Microbiol 68:6210–6219.  https://doi.org/10.1128/AEM.68.12.6210 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Weekers F, Jacques P, Springael D, Mergeay M, Diels L, Thonart P (1999) Improving the catabolic functions of desiccation-tolerant soil bacteria. Appl Biochem Biotechnol 77–79:251–266CrossRefGoogle Scholar
  64. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Oumaima Zouari
    • 1
    • 2
  • Didier Lecouturier
    • 1
    • 4
    Email author
  • Alice Rochex
    • 1
  • Gabrielle Chataigne
    • 1
  • Pascal Dhulster
    • 1
  • Philippe Jacques
    • 1
    • 3
  • Dhouha Ghribi
    • 2
  1. 1.Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7394 - ICV - Institut Charles ViolletteLilleFrance
  2. 2.Unit of Enzyme and BioconversionNational School of EngineersSfaxTunisia
  3. 3.TERRA Teaching and Research Centre, Microbial Processes and InteractionsGemblouxAgroBio Tech Liege UniversityGemblouxBelgium
  4. 4.Institut Charles Viollette, Université de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations