Advertisement

Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site

  • Lauren M. Czaplicki
  • Monika Dharia
  • Ellen M. Cooper
  • P. Lee Ferguson
  • Claudia K. Gunsch
Original Paper

Abstract

Although ecological flexibility has been well documented in fungi, it remains unclear how this flexibility can be exploited for pollutant degradation, especially in the Ascomycota phylum. In this work, we assess three mycostimulation amendments for their ability to induce degradation in Trichoderma harzanium, a model fungus previously isolated from a Superfund site contaminated with polycyclic aromatic hydrocarbons. The amendments used in the present study were selected based on the documented ecological roles of ascomycetes. Chitin was selected to simulate the parasitic ecological role while cellulose and wood were selected to mimic bulk soil and wood saprobic conditions, respectively. Each amendment was tested in liquid basal medium in 0.1 and 1% (w/v) suspensions. Both chitin and cellulose amendments were shown to promote anthracene degradation in T. harzanium with the 0.1% chitin amendment resulting in over 90% removal of anthracene. None of the targets monitored for gene expression were found to be upregulated suggesting alternate pathways may be used in T. harzanium. Overall, our data suggest that mycostimulation amendments can be improved by understanding the ecological roles of indigenous fungi. However, further research is needed to better estimate specific amendment requirements for a broader group of target fungi and follow up studies are needed to determine whether the trends observed herein translate to more realistic soil systems.

Keywords

Mycoremediation Polycyclic aromatic hydrocarbons Trichoderma harzianum Bioreactors Bioremediation 

Notes

Acknowledgements

Funding for this work was gratefully provided by the NIEHS-supported Duke University Superfund Research Center (NIEHS Grant P42-ES010356).

References

  1. Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin, pp 29–49CrossRefGoogle Scholar
  2. Arnholt AT, Evans B (2017) Basic statistics and data analysis. CRANGoogle Scholar
  3. Askolin S et al (2006) Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromol 7(4):1295–1301CrossRefGoogle Scholar
  4. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242CrossRefPubMedGoogle Scholar
  5. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1(1):4–12CrossRefGoogle Scholar
  6. Barbi F et al (2014) PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing. PLoS ONE 9(12):e116264CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78A–87ACrossRefPubMedGoogle Scholar
  8. Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54(6):751–758CrossRefPubMedGoogle Scholar
  10. Carrard G et al (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci 97(19):10342–10347CrossRefPubMedGoogle Scholar
  11. Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110CrossRefGoogle Scholar
  12. Chemidlin Prévost-Bouré N et al (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6(9):e24166CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crampon M et al (2014) Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environ Sci Pollut Res 21(13):8133–8145Google Scholar
  14. Czaplicki LM et al (2016) A new perspective on sustainable soil remediation—case study suggests novel fungal genera could facilitate in situ biodegradation of hazardous contaminants. Remediat J 26(2):59–72CrossRefGoogle Scholar
  15. Di Giulio RT, Clark BW (2015) The Elizabeth river story: a case study in evolutionary toxicology. J Toxicol Environ Health B. 18(6):259–298CrossRefGoogle Scholar
  16. Dowson CG, Rayner ADM, Boddy L (1988) Foraging patterns of Phallus impudicus, Phanerochaete laevis and Steccherinum fimbriatum between discontinuous resource units in soil. FEMS Microbiol Lett 53(5):291–298CrossRefGoogle Scholar
  17. Druzhinina IS et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749CrossRefPubMedGoogle Scholar
  18. Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  19. Edwards IP, Upchurch RA, Zak DR (2008) Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl Environ Microbiol 74(11):3481–3489CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ellis DE, Hadley PW (2009) Sustainable remediation white paper—integrating sustainable principles, practices, and metrics into remediation projects. Remediat J 19(3):5–114CrossRefGoogle Scholar
  21. Gadd GM (1994) Interactions of fungi with toxic metals. In: Powell K, Renwick A, Peberdy J (eds) The genus Aspergillus. Springer, New York, pp 361–374CrossRefGoogle Scholar
  22. Grigoriev IV et al (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40(D1):D26–D32CrossRefPubMedGoogle Scholar
  23. Gunsch CK et al (2006) Quantification of homogentisate-1, 2-dioxygenase expression in a fungus degrading ethylbenzene. J Microbiol Methods 67(2):257–265CrossRefPubMedGoogle Scholar
  24. Gunsch CK et al (2007) Relative gene expression quantification in a fungal gas-phase biofilter. Biotechnol Bioeng 98(1):101–111CrossRefPubMedGoogle Scholar
  25. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192CrossRefPubMedGoogle Scholar
  26. Hellemans J et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang Y et al (2015) Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 171:8–20CrossRefPubMedGoogle Scholar
  28. Kanaly RA, Hur H-G (2006) Growth of Phanerochaete chrysosporium on diesel fuel hydrocarbons at neutral pH. Chemosphere 63(2):202–211CrossRefPubMedGoogle Scholar
  29. Kohlmeier S et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646CrossRefPubMedGoogle Scholar
  30. Krivobok S et al (1998) Biodegradation of Anthracene by soil fungi. Chemosphere 37(3):523–530CrossRefPubMedGoogle Scholar
  31. Lade HS et al (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegrad 72:94–107CrossRefGoogle Scholar
  32. Launen LA, Pinto LJ, Moore MM (1999) Optimization of pyrene oxidation by Penicillium janthinellum using response-surface methodology. Appl Microbiol Biotechnol 51(4):510–515CrossRefPubMedGoogle Scholar
  33. Leitao AL et al (2011) Penicillium chrysogenum var. halophenolicum, a new halotolerant strain with potential in the remediation of aromatic compounds in high salt environments. Microbiol Res 167(2):79–89CrossRefPubMedGoogle Scholar
  34. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lienemann M et al (2009) Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum. Glycobiology 19(10):1116–1126CrossRefPubMedGoogle Scholar
  36. Limon MC et al (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198(1):57–63CrossRefPubMedGoogle Scholar
  37. Limon MC et al (2004) Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl Microbiol Biotechnol 64(5):675–685CrossRefPubMedGoogle Scholar
  38. Linder MB et al (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896CrossRefPubMedGoogle Scholar
  39. Lombard V et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495CrossRefPubMedGoogle Scholar
  40. Mach RL et al (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65(5):1858–1863PubMedPubMedCentralGoogle Scholar
  41. Madden T (2013) The BLAST sequence analysis toolGoogle Scholar
  42. Mancera-López ME et al (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61(2):151–160CrossRefGoogle Scholar
  43. Miles PG, Chang S-T (1997) Mushroom biology: concise basics and current developments. World Scientific, SingaporeCrossRefGoogle Scholar
  44. Mukherjee PK et al (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51(1):105–129CrossRefPubMedGoogle Scholar
  45. Müncnerová D, Augustin J (1994) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Biores Technol 48(2):97–106CrossRefGoogle Scholar
  46. Nordberg H et al (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42(Database issue):D26–D31CrossRefPubMedGoogle Scholar
  47. Puglisi I et al (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 506(2):325–330CrossRefPubMedGoogle Scholar
  48. Rafin C, de Foucault B, Veignie E (2013) Exploring micromycetes biodiversity for screening benzo[a]pyrene degrading potential. Environ Sci Pollut Res Int 20(5):3280–3289CrossRefPubMedGoogle Scholar
  49. Ritter GJ, Fleck LC (1924) Determination of cellulose in wood. Ind Eng Chem 16(2):147–148CrossRefGoogle Scholar
  50. Schamfuß S et al (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47(13):6908–6915CrossRefPubMedGoogle Scholar
  51. Schnecker J et al (2016) Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming. Soil Biol Biochem 103:300–307CrossRefPubMedPubMedCentralGoogle Scholar
  52. Seidl V et al (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics.  https://doi.org/10.1186/1471-2164-10-567 PubMedPubMedCentralGoogle Scholar
  53. Spatafora JW et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046CrossRefPubMedGoogle Scholar
  54. Takahashi T et al (2005) The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Microbiol 57(6):1780–1796CrossRefPubMedGoogle Scholar
  55. Tornberg K, Olsson S (2002) Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiol Ecol 40(1):13–20CrossRefPubMedGoogle Scholar
  56. Tuisel H et al (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279(1):158–166CrossRefPubMedGoogle Scholar
  57. Vieira PM et al (2013a) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14:177CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vieira PM et al (2013b) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14:177CrossRefPubMedPubMedCentralGoogle Scholar
  59. von Lützow M et al (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39(9):2183–2207CrossRefGoogle Scholar
  60. Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11(22):1952–1965CrossRefGoogle Scholar
  61. Warmink JA et al (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43(4):760–765CrossRefGoogle Scholar
  62. Wick LY et al (2006) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41(2):500–505CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Lauren M. Czaplicki
    • 1
  • Monika Dharia
    • 1
  • Ellen M. Cooper
    • 2
  • P. Lee Ferguson
    • 1
  • Claudia K. Gunsch
    • 1
  1. 1.Department of Civil & Environmental EngineeringDuke UniversityDurhamUSA
  2. 2.Nicholas School of the EnvironmentDuke UniversityDurhamUSA

Personalised recommendations