, Volume 29, Issue 1, pp 71–88 | Cite as

Whole community transcriptome of a sequencing batch reactor transforming 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO)

  • Jennifer WeidhaasEmail author
  • Alexander Panaccione
  • Ananda Shankar Bhattacharjee
  • Ramesh Goel
  • Angela Anderson
  • Saraswati Poudel Acharya
Original Paper


Two sequencing batch reactors (SBRs) were run to bio-mineralize 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) in lab scale settings. The reactors were shown to reproducibly biotransform these munitions under aerobic and anaerobic conditions during the operations of these SBRs. Complete removal (100% biotransformation) of DNAN (initially 17.7 ± 5.4 mg L−1) and NTO (initially 15.0 ± 7.1 mg L−1) was observed in an anaerobic SBR when Luria-Bertani (LB) broth was present. In contrast, an aerobic SBR degraded only 58 ± 22% of DNAN (initially 19.7 ± 6.2 mg L−1) and 45 ± 24% of NTO (initially 9.7 ± 6.3 mg L−1) when either LB or glucose was also added indicating that anaerobic conditions are more favorable for biotransformation of these munitions. Transcriptomic analysis of the DNAN and NTO degrading anaerobic SBR revealed upregulation of a putative nitroreductase, hydroxylaminophenol mutases, 4-hydroxylphenyl acetate associated genes, and quinone oxioreductases. Major Bacterial populations included Bacteroidales, Campylobacterales, Enterobacteriales, Pseudomonadales, Burkholderiales and Clostridiales. Results from this study can be used to inform investigation of munition degrading organisms and the functional genes responsible.


Munitions Biotransformation Sequencing batch reactor Transcriptomics 



Partial funding for this work was obtained from the West Virginia University Civil and Environmental Engineering Summer Undergraduate Research Fellowship program. The authors would like to acknowledge the Genomics Core Facility at West Virginia University for their support with Next Generation library prep and sequencing.

Supplementary material

10532_2017_9814_MOESM1_ESM.xls (27.6 mb)
Supplementary material 1 (XLS 28310 kb)
10532_2017_9814_MOESM2_ESM.docx (134 kb)
Supplementary material 2 (DOCX 133 kb)


  1. Al-Kaysi R, Creed D, Valente EJ (2004) Meisenheimer complex from picric acid and diisopropylcarbodiimide. J Chem Crystallogr 34:685–692CrossRefGoogle Scholar
  2. APHA (2012) Standard methods for examination of water and wastewater, vol 22. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DCGoogle Scholar
  3. Arnett C, Rodriguez G, Maloney S (2009) Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2,4,-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16S rRNA gene clone libraries. Microbes Environ 24:72–75CrossRefPubMedGoogle Scholar
  4. Atkins P, Gold V, Wassef W (1983) Hydride transfer from cyclohexadienyl anions: the reaction between the hydride meisenheimer adduct of 2,4-dinitroaniline and I,3,5-trinitrobenzene Journal of the Chemical Society. Perkin Trans 2:1197–1198CrossRefGoogle Scholar
  5. Bateman A et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhatnagar N, Kamath G, Potoff J (2013) Prediction of 1-octanol–water and air–water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys Chem Chem Phys 15:6467–6474CrossRefPubMedGoogle Scholar
  7. Boddu V, Abburi K, Maloney S, Damavarapu R (2008) Thermophysical properties of an insensitive munitions compound, 2,4-dintiroanisole. J Chem Eng Data 53:1120–1125CrossRefGoogle Scholar
  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. PubMedPubMedCentralGoogle Scholar
  9. Bradley P, Chapelle F, Landmeyer J, Schumacher J (1994) Microbial transformation of nitroaromatics in surface soils and aquifer materials. Appl Environ Microbiol 60:2170–2175PubMedPubMedCentralGoogle Scholar
  10. Cupples AM (2013) RDX degrading microbial communities and the prediction of microorganisms responsible for RDX bioremediation. Int Biodeterior Biodegrad 85:260–270. CrossRefGoogle Scholar
  11. Davies P, Provatas A (2006) Characterization of 2, 4-dinitroanisole: an ingredient for use in low sensitivity melt cast formulations. Weapons Systems Division, Defense Science and Technology Organization, Weapons Systems Division, Defense Science and Technology Organization. DSTO-TR-1904.Google Scholar
  12. Dodard SG, Sarrazin M, Hawari J, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2013) Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN). J Hazard Mater 262:143–150. CrossRefPubMedGoogle Scholar
  13. Eberly JO, Indest KJ, Hancock DE, Jung CM, Crocker FH (2016) Metagenomic analysis of denitrifying wastewater enrichment cultures able to transform the explosive, 3-nitro-1,2,4-triazol-5-one (NTO). J Ind Microbiol Biotechnol 43:795–805. CrossRefPubMedGoogle Scholar
  14. Felt D, Johnson J, Larson S, Hubbard B, Henry K, Nestler C, Ballard J (2013) Evaluation of treatment technologies for wastewater from insensitive munitions production. Phase 1: technology down-selection. Engineer research and development center, Environmental Lab, VicksburgGoogle Scholar
  15. Fida TT, Palamuru S, Pandey G, Spain JC (2014) Aerobic biodegradation of 2,4-dinitroanisole by nocardioides sp. strain JS1661. Appl Environ Microbiol 80:7725–7731. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gupta V, Ali I, Saleh T, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling-an overview. R Soc Chem Adv 2:6380–6388Google Scholar
  17. Haas BJ et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis Nat Protocols 8:1494-1512.
  18. Hammer O, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  19. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618. CrossRefPubMedGoogle Scholar
  20. Hawari J et al (2015) Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products. Chemosphere 119:16–23. CrossRefPubMedGoogle Scholar
  21. Hoyt N, Brunell M, Kroeck K, Hable M, Crouse L, O’Neill A, Bannon DI (2013) Biomarkers of oral exposure to 3-nitro-1, 2, 4-triazol-5-one (NTO) and 2, 4-dinitroanisole (DNAN) in blood and urine of rhesus macaques (Macaca mulatta). Biomarkers 18:587–594CrossRefPubMedGoogle Scholar
  22. Jayamani I, Cupples AM (2015) A comparative study of microbial communities in four soil slurries capable of RDX degradation using illumina sequencing. Biodegradation 26:247–257. CrossRefPubMedGoogle Scholar
  23. Jiménez JI, Nogales J, García JL, Díaz E (2010) A genomic view of the catabolism of aromatic compounds in Pseudomonas. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 1297–1325. CrossRefGoogle Scholar
  24. Johnson GR, Spain JC (2003) Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene. Appl Microbiol Biotechnol 62:110–123. CrossRefPubMedGoogle Scholar
  25. Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484PubMedPubMedCentralGoogle Scholar
  26. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Karthikeyan S, Spain JC (2016) Biodegradation of 2,4-dinitroanisole (DNAN) by Nocardioides sp. JS1661 in water, soil and bioreactors. J Hazard Mater 312:37–44. CrossRefPubMedGoogle Scholar
  28. Krzmarzick MJ, Khatiwada R, Olivares CI, Abrell L, Sierra-Alvarez R, Chorover J, Field JA (2015) Biotransformation and degradation of the insensitive munitions compound, 3-Nitro-1,2,4-triazol-5-one, by soil bacterial communities. Environ Sci Technol 49:5681–5688. CrossRefPubMedGoogle Scholar
  29. Le Campion L, Vandais A, Ouazzani J (1999) Microbial remediation of NTO in aqueous industrial wastes. FEMS Microbiol Lett 176:197–203CrossRefPubMedGoogle Scholar
  30. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. CrossRefGoogle Scholar
  31. Liang J, Olivares C, Field JA, Sierra-Alvarez R (2013) Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater 262:281–287. CrossRefPubMedGoogle Scholar
  32. Lotufo GR et al (2015) Accumulation of 2,4-dinitroanisole in the earthworm Eisenia fetida from chemically spiked and aged natural soils. Environ Toxicol Chem. Google Scholar
  33. Madeira CL, Speet SA, Nieto CA, Abrell L, Chorover J, Sierra-Alvarez R, Field JA (2017) Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO). Chemosphere 167:478–484. CrossRefPubMedGoogle Scholar
  34. Meyer F et al (2008) The metagenomics RAST server: a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386. CrossRefGoogle Scholar
  35. Mullins AB, Despain KE, Wallace SM, Honnold CL, May Lent E (2016) Testicular effects of 3-nitro-1, 2, 4-triazol-5-one (NTO) in mice when exposed orally. Toxicol Mech Methods 26:97–103CrossRefPubMedGoogle Scholar
  36. Nogales J, Canales A, Jimenez-Barbero J, Serra B, Pingarron JM, Garcia JL, Diaz E (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol Microbiol 79:359–374. CrossRefPubMedGoogle Scholar
  37. Olivares C, Liang J, Abrell L, Sierra-Alvarez R, Field JA (2013) Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge. Biotechnol Bioeng 110:1595–1604. CrossRefPubMedGoogle Scholar
  38. Olivares CI, Abrell L, Khatiwada R, Chorover J, Sierra-Alvarez R, Field JA (2016) (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils. J Hazard Mater 304:214–221. CrossRefPubMedGoogle Scholar
  39. Ou C et al (2016) Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater. Water Res 101:457–466. CrossRefPubMedGoogle Scholar
  40. Perreault NN, Manno D, Halasz A, Thiboutot S, Ampleman G, Hawari J (2012) Aerobic biotransformation of 2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation 23:287–295. CrossRefPubMedGoogle Scholar
  41. Platten W III, Bailey D, Suidan M, Maloney S (2010) Biological transformation pathways of 2,4-dinitro anisole and N-methyl paranitro aniline in anaerobic fluidized-bed bioreactors. Chemosphere. PubMedGoogle Scholar
  42. Powell S (2013) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucl Acids Res. Google Scholar
  43. Reddy G, Song J, Kirby P, Lent EM, Crouse LCB, Johnson MS (2011) Genotoxicity assessment of an energetic propellant compound, 3-nitro-1,2,4-triazol-5-one (NTO). Mutat Res Genet Toxicol Environ Mutagene 719:35–40. CrossRefGoogle Scholar
  44. Richard T, Weidhaas J (2014a) Biodegradation of IMX-101 explosive formulation constituents: 2,4-Dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater 280:372–379. CrossRefPubMedGoogle Scholar
  45. Richard T, Weidhaas J (2014b) Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater 280:561–569. CrossRefPubMedGoogle Scholar
  46. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111. CrossRefPubMedGoogle Scholar
  47. Schroer HW, Langenfeld KL, Li X, Lehmler H-J, Just CL (2015) Stable isotope-enabled pathway elucidation of 2,4-dinitroanisole metabolized by Rhizobium lichtii. Environ Sci Technol Lett 2:362–366. CrossRefGoogle Scholar
  48. Schroer HW, Langenfeld KL, Li X, Lehmler H-J, Just CL (2017) Biotransformation of 2, 4-dinitroanisole by a fungal Penicillium sp. Biodegradation 28:95–109CrossRefPubMedGoogle Scholar
  49. Shen J et al (2013) Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and fenton oxidation process. J Hazard Mater 260:993–1000. CrossRefPubMedGoogle Scholar
  50. Spain J (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555CrossRefPubMedGoogle Scholar
  51. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6:e21800. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y, Negoro S (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng 95:139–145. CrossRefPubMedGoogle Scholar
  53. Wallace L, Cronin M, Day A, Buck D (2009) Electrochemical method applicable to treatment of wastewater from nitrotriazolone production. Environ Sci Technol 43:1993–1998CrossRefPubMedGoogle Scholar
  54. Wijker RS, Pati SG, Zeyer J, Hofstetter TB (2015) Enzyme kinetics of different types of flavin-dependent monooxygenases determine the observable contaminant stable isotope fractionation. Environ Sci Technol Lett 2:329–334. CrossRefGoogle Scholar
  55. Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Xue H, Gao H, Twamley B, Shreeve J (2007) Energetic salts of 3-nitro-1,2,4-triazole-5-one, 5-nitroaminotetrazole, and other nitro-substituted azoles. Chem Mater 19:1731–1739CrossRefGoogle Scholar
  57. Zhao J-S, Manno D, Hawari J (2008) Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology 154:1026–1037. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.West Virginia University, Civil and Environmental EngineeringMorgantownUSA
  2. 2.University of Utah, Civil and Environmental EngineeringSalt Lake CityUSA
  3. 3.Bigelow Laboratory for Ocean SciencesEast BoothbayUSA

Personalised recommendations