Biodegradation

, Volume 28, Issue 2–3, pp 159–170 | Cite as

Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter

  • Weiqiang Zhu
  • Peiyu Zhang
  • Deshuang Yu
  • Huiyu Dong
  • Jin Li
Original Paper

Abstract

A sequencing batch reactor (SBR) was used to test the nitrogen removal performance of anaerobic ammonium oxidation (ANAMMOX) in presence of organic matter. Mesophilic operation (30 ± 0.5 °C) was performed with influent pH 7.5. The results showed, independent of organic matter species, ANAMMOX reaction was promoted when COD was lower than 80 mg/L. However, specific ANAMMOX activity decreased with increasing organic matter content. Ammonium removal efficiency decreased to 80% when COD of sodium succinate, sodium potassium tartrate, peptone and lactose were 192.5, 210, 225 and 325 mg/L, respectively. The stoichiometry ratio resulting from different OM differed largely and R1 could be as an indicator for OM inhibition. When COD concentration was 240 mg/L, the loss of SAA resulting from lactose, peptone, sodium potassium tartrate and sodium succinate were 28, 36, 50 and 55%, respectively. Sodium succinate had the highest inhibitory effect on SAA. When ANAMMOX process was used to treat wastewater containing OM, the modified Logistic model could be employed to predict the NREmax.

Keywords

Nitrogen removal Organic matter ANAMMOX Denitrification Kinetic model 

Supplementary material

10532_2017_9785_MOESM1_ESM.docx (313 kb)
Supplementary material 1 (DOCX 312 kb)

References

  1. Anjali G, Sabumon PC (2014) Unprecedented development of anammox in presence of organic carbon using seed biomass from a tannery Common Effluent Treatment Plant (CETP). Bioresour Technol 153(2):30–38CrossRefPubMedGoogle Scholar
  2. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Chamchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour Technol 99(9):3331–3336CrossRefPubMedGoogle Scholar
  4. Dalsgaard T, Thamdrup B (2002) Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol 68(8):3802–3808CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dapena-Mora A, Campos IFL (2007) Evaluation of activity and inhibition effects on ANAMMOX process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40(4):859–865CrossRefGoogle Scholar
  6. Dosta J, Fernández I, Vázquez-Padín JR, Mosquera-Corral A, Campos JL, Mata-Álvarez J, Méndez R (2008) Short- and long-term effects of temperature on the ANAMMOX process. J Hazard Mater 154(1–3):688–693CrossRefPubMedGoogle Scholar
  7. Fernández I, Mosquera-Corral A, Campos JL, Méndez R (2009) Operation of an ANAMMOX SBR in the presence of two broad-spectrum antibiotics. Process Biochem 44(4):494–498CrossRefGoogle Scholar
  8. Guven D, Dapena A, Kartal B, Schmid MC, Maas B, van de Pas-Schoonen K, Sozen S, Mendez R, Op den Camp HJ, Jetten MS, Strous M, Schmidt I (2005) Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 71(2):1066–1071CrossRefPubMedPubMedCentralGoogle Scholar
  9. Isaka K, Suwa Y, Kimura Y, Yamagishi T, Sumino T, Tsuneda S (2008) Anaerobic ammonium oxidation (ANAMMOX) irreversibly inhibited by methanol. Appl Microbiol Biotechnol 81(2):379–385CrossRefPubMedGoogle Scholar
  10. Jensen MM, Thamdrup B, Dalsgaard T (2007) Effects of specific inhibitors on ANAMMOX and denitrification in marine sediments. Appl Environ Microbiol 73(10):3151–3158CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damste JS, Jetten MS, Strous M (2007) Candidatus “ANAMMOXoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30(1):39–49CrossRefPubMedGoogle Scholar
  12. Kuenen JG (2008) ANAMMOX bacteria: from discovery to application. Nat Rev Microbiol 6(6):320–326CrossRefPubMedGoogle Scholar
  13. Li J, Qiang Z, Yu D, Wang D, Zhang P, Li Y (2016) Performance and microbial community of simultaneous anammox and denitrification (SAD) process in a sequencing batch reactor. Bioresour Technol 218:1064–1072CrossRefPubMedGoogle Scholar
  14. Liu C, Zhao D, Yan L, Wang A, Gu Y, Lee DJ (2015) Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and ANAMMOX bacteria. Bioresour Technol 191:332–336CrossRefPubMedGoogle Scholar
  15. Ma B, Wang S, Cao S, Miao Y, Jia F, Du R, Peng Y (2016) Biological nitrogen removal from sewage via ANAMMOX: recent advances. Bioresour Technol 200:981–990CrossRefPubMedGoogle Scholar
  16. Molinuevo B, Garcia MC, Karakashev D, Angelidaki I (2009) ANAMMOX for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresour Technol 100(7):2171–2175CrossRefPubMedGoogle Scholar
  17. Ni SQ, Ni JY, Hu DL, Sung S (2012) Effect of organic matter on the performance of granular ANAMMOX process. Bioresour Technol 110(110):701–705CrossRefPubMedGoogle Scholar
  18. Okamoto H, Kawamura K, Nishiyama T, Fujii T, Furukawa K (2012) Development of a fixed-bed anammox reactor with high treatment potential. Biodegradation 24(1):99–110CrossRefPubMedPubMedCentralGoogle Scholar
  19. Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157(6):1706–1713CrossRefPubMedGoogle Scholar
  20. Qiao S, Kawakubo Y, Cheng Y, Nishiyama T, Fujii T, Furukawa K (2009) Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor. Biodegradation 20(1):117–124CrossRefPubMedGoogle Scholar
  21. Qiao S, Yin X, Zhou J, Furukawa K (2014) Inhibition and recovery of continuous electric field application on the activity of anammox biomass. Biodegradation 25(4):505–513CrossRefPubMedGoogle Scholar
  22. Regmi P, Holgate B, Fredericks D, Miller MW, Wett B, Murthy S, Bott CB (2015) Optimization of a mainstream nitritation-denitritation process and ANAMMOX polishing. Water Sci Technol 72(4):632–642CrossRefPubMedGoogle Scholar
  23. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50(5):589–596CrossRefGoogle Scholar
  24. Sun W, Banihani Q, Sierra-Alvarez R, Field JA (2011) Stoichiometric and molecular evidence for the enrichment of anaerobic ammonium oxidizing bacteria from wastewater treatment plant sludge samples. Chemosphere 84(9):1262–1269CrossRefPubMedGoogle Scholar
  25. Tang CJ, Zheng P, Wang CH, Mahmood Q (2010) Suppression of anaerobic ammonium oxidizers under high organic content in high-rate ANAMMOX UASB reactor. Bioresour Technol 101(6):1762–1768CrossRefPubMedGoogle Scholar
  26. Tang CJ, Ping Z, Chai LY, Min XB (2013) Thermodynamic and kinetic investigation of anaerobic bioprocesses on ANAMMOX under high organic conditions. Chem Eng J 230(16):149–157CrossRefGoogle Scholar
  27. Toh SK, Webb RI, Ashbolt NJ (2002) Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters. Microb Ecol 43(43):154–167CrossRefPubMedGoogle Scholar
  28. Tomar S, Gupta SK, Mishra BK (2015) A novel strategy for simultaneous removal of nitrogen and organic matter using anaerobic granular sludge in ANAMMOX hybrid reactor. Bioresour Technol 197:171–177CrossRefPubMedGoogle Scholar
  29. van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microb 61(4):1246–1251Google Scholar
  30. van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142(8):2187–2196CrossRefGoogle Scholar
  31. Vlaeminck SE, Terada A, Smets BF, De Clippeleir H, Schaubroeck T, Bolca S, Demeestere L, Mast J, Boon N, Carballa M, Verstraete W (2010) Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and ANAMMOX. Appl Environ Microb 76(3):900–909CrossRefGoogle Scholar
  32. Wang JL, Wan W (2009) Kinetic models for fermentative hydrogen production: a review. Int J Hydrogen Energy 34(8):3313–3323CrossRefGoogle Scholar
  33. Xu ZY, Zeng GM, Yang ZH, Xiao Y, Cao M, Sun HS, Ji LL, Chen Y (2009) Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresour Technol 101(1):79–86CrossRefPubMedGoogle Scholar
  34. Yamamoto T, Takaki K, Koyama T, Furukawa K (2008) Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by ANAMMOX. Bioresour Technol 99(14):6419–6425CrossRefPubMedGoogle Scholar
  35. Yang GF, Jin RC (2013) Reactivation of effluent granular sludge from a high-rate ANAMMOX reactor after storage. Biodegradation 24(1):13–32CrossRefPubMedGoogle Scholar
  36. Yuan L, Huang Z, Ruan W, Ren H, Zhao M (2015) ANAMMOX performance, granulation, and microbial response under COD disturbance. J Chem Technol Biotechnol 90:139–148CrossRefGoogle Scholar
  37. Zwietering M, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Weiqiang Zhu
    • 1
  • Peiyu Zhang
    • 1
  • Deshuang Yu
    • 1
  • Huiyu Dong
    • 2
  • Jin Li
    • 1
  1. 1.School of Environmental Science and EngineeringQingdao UniversityQingdaoChina
  2. 2.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental SciencesUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina

Personalised recommendations