, Volume 26, Issue 2, pp 151–160 | Cite as

Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment

  • Sávia Gavazza
  • Juan J. L. Guzman
  • Largus T. AngenentEmail author
Original Paper


Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion.


Anaerobic treatment Electric potential Azo dye Direct Black 22 Aromatic amines Toxicity Electrolysis eAD 



The authors thank the Brazilian agency CNPq for a Post-Doctorate Scholarship (Process number 202290/2012-3) granted to S.G. and the National Science Foundation through CAREER Grant No. 0939882 to L.T.A. We also thank anonymous reviewers for helpful comments.


  1. Amaral FM, Kato MT, Florencio L, Gavazza S (2014) Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes. Bioresour Technol 163:364–369. doi: 10.1016/j.biortech.2014.04.026 CrossRefPubMedGoogle Scholar
  2. American Public Health Association, American Water Works Association, and Water Environment Federation (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  3. Amorim SA, Kato MT, Florencio L, Gavazza S (2013) Influence of redox mediators and electron donors on the anaerobic removal of color and chemical oxygen demand from textile effluent. Clean 41:928–933. doi: 10.1002/clen.201200070 Google Scholar
  4. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domínguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485. doi: 10.1016/j.tibtech.2004.07.001 CrossRefPubMedGoogle Scholar
  5. Baeta BEL, Aquino SF, Silva SQ, Correa CAR (2012) Anaerobic degradation of azo dye Drimaren blue HFRL in UASB reactor in the presence of yeast extract a source of carbon and redox mediator. Biodegradation 23:199–208. doi: 10.1007/s10532-011-9499-4 CrossRefPubMedGoogle Scholar
  6. Carliell CM, Barclay SJ, Naidoo N, Bucley CA, Mulhlland DA, Senior E (1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 21:61. doi: 10.1080/09593331908616772 Google Scholar
  7. Chen G, Cheng KY, Ginige MP, Kaksonen AH (2012) Aerobic degradation of sulfanilic acid using activated sludge. Water Res 46:145–151. doi: 10.1016/j.watres.2011.10.043 CrossRefPubMedGoogle Scholar
  8. Chun CL, Payne RB, Sowers KR, May HD (2013) Electrical stimulation of microbial PCB degradation in sediment. Water Res 47:141–152. doi: 10.1016/j.watres.2012.09.038 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cui D, Li G, Zhao D, Gu X, Wang C, Zhao M (2012) Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. J Hazard Mater 221–222:185–192. doi: 10.1016/j.jhazmat.2012.04.032 CrossRefPubMedGoogle Scholar
  10. Dillalo R, Albertson OE (1961) Volatile acids by direct titration. J Water Pollut Control Fed 3:356–365Google Scholar
  11. Fernando E, Keshavarz T, Kyazze G (2013) Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophillic (50 °C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells. Bioresour Technol 127:1–8. doi: 10.1016/j.biortech.2012.09.065 CrossRefPubMedGoogle Scholar
  12. Ferraz ADN Jr, Kato MT, Florencio L, Gavazza S (2011) Textile effluent treatment in a UASB reactor followed by submerged aerated biofiltration. Water Sci Technol 64:1581–1589. doi: 10.2166/wst.2011.674 CrossRefPubMedGoogle Scholar
  13. Franciscon E, Zille A, Fantinatti-Garboggini F, Serrano Silva I, Cavaco-Paulo A, Durrant LR (2009) Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452. doi: 10.1016/j.procbio.2008.12.009 CrossRefGoogle Scholar
  14. Kato MT, Field JA, Lettinga G (1993) High tolerance of methanogens in granular sludge to oxygen. Biotechnol Bioeng 42(5):1360–1366CrossRefPubMedGoogle Scholar
  15. Kawasaki S, Watamura Y, Ono M, Watanabe T, Takeda K, Niimura Y (2005) Adaptive responses to oxygen stress in obligatory anaerobes Clostridium acetobutylicum and Clostridium aminovalericum. Appl Environ Microbiol 71(12):8442–8450. doi: 10.1128/AEM.71.12.8442-8450.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Keck A, Klein J, Kudlich M, Stolz A, Hj Knackmuss, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. Strain BN6. Appl Environ Microbiol 63(9):3684–3690PubMedCentralPubMedGoogle Scholar
  17. Kong QT, Wu QL, Ma ZF, Shen SC (1986) Oxygen sensitivity of the nifLA promoter of Klebsiella pneumonia. J Bacteriol 166(2):353–356PubMedCentralPubMedGoogle Scholar
  18. Kong F, Wang A, Ren HY (2015) Improved azo dye decolorization in an advanced integrated system of bioelectrochemical module with surrounding electrode deployment and anaerobic sludge reactor. Bioresour Technol 175:624–628. doi: 10.1016/j.biortech.2014.10.091 CrossRefGoogle Scholar
  19. Loesche WJ (1969) Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol 18(5):723–727PubMedCentralPubMedGoogle Scholar
  20. Mu Y, Rabaey K, Rozendal RA, Yuan ZG, Keller J (2009a) Decolourization of azo dyes in bio-electrochemical systems. Environ Sci Technol 43:5137–5143. doi: 10.1021/es900057f CrossRefPubMedGoogle Scholar
  21. Mu Y, Rozendal RA, Rabaey K, Keller J (2009b) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43:8690–8695. doi: 10.1021/es9020266 CrossRefPubMedGoogle Scholar
  22. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84. doi: 10.1016/j.ibiod.2006.08.006 CrossRefGoogle Scholar
  23. Pinheiro HM, Touraud E, Thomas O (2004) Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 61:121–139. doi: 10.1016/j.dyepig.2003.10.009 CrossRefGoogle Scholar
  24. Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater—a review. Appl Biochem Biotechnol 167:645–661. doi: 10.1007/s12010-012-9716-6 CrossRefPubMedGoogle Scholar
  25. Shen J, Feng C, Zhang Y, Jia F, Sun X, Li J, Han W, Wang L, Mu Y (2012) Bioelectrochemical system for recalcitrant p-nitrophenol removal. J Hazard Mater 209–210:516–519. doi: 10.1016/j.jhazmat.2011.12.065 CrossRefPubMedGoogle Scholar
  26. Silva MER, Firmino PIM, Sousa MR, Dos Santos AB (2012) Sequential anaerobic/aerobic treatment of dye-containing wastewaters: colour and COD removals, and ecotoxicity tests. Appl Biochem Biotechnol 166:1057–1069. doi: 10.1007/s12010-011-9493-7 CrossRefPubMedGoogle Scholar
  27. Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Bioresour Technol 131:564–571. doi: 10.1016/j.biortech.2012.12.063 CrossRefPubMedGoogle Scholar
  28. Sun J, Li W, Li Y, Hu Y, Zhang Y (2013) Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour Technol 142:407–414. doi: 10.1016/j.biortech.2013.05.039 CrossRefPubMedGoogle Scholar
  29. Tan NCG, Prenafeta-Boldu FX, Opsteeg J, Lettinga G, Field JA (1999) Biodegradation of azo dyes in cocultures of anaerobic granular sludge with aerobic aromatic amine degrading enrichment cultures. Appl Microbiol Biotechnol 51:865–871. doi: 10.1007/s002530051475 CrossRefPubMedGoogle Scholar
  30. Tan NCG, van Leeuwen A, van Voorthuizen EM, Slenders P, Prenafeta-Boldú FX, Temmink H, Lettinga G, Field JA (2005) Fate and biodegradability of sulfonated aromatic amines. Biodegradation 16(6):527–537CrossRefPubMedGoogle Scholar
  31. Tartakovsky B, Mehta P, Bourque J-S, Guiot SR (2011) Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol 102:5685–5691. doi: 10.1016/j.biortech.2011.02.097 CrossRefPubMedGoogle Scholar
  32. Vanýsek P (2012) Electrochemical series. In: Haynes WM (ed) Handbook of chemistry and physics, 93rd edn. Chemical Rubber Company, ClevelandGoogle Scholar
  33. Wang D, Zheng G, Wang S, Zhang D, Zhou L (2011) Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge. J Environ Sci 23(12):2063–2068. doi: 10.1016/S1001-0742(10)60501-3 Google Scholar
  34. Wang YZ, Wang AJ, Liu WZ, Sun Q (2013a) Anode enhanced azo dye removal through anode biofilm acclimation to toxicity in single-chamber biocatalyzed electrolysis system. Bioresour Technol 142:688–692. doi: 10.1016/j.biortech.2013.05.007 CrossRefPubMedGoogle Scholar
  35. Wang YZ, Wang AJ, Liu WZ, Kong DY, Tan WB, Liu C (2013b) Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems. Bioresour Technol 146:740–743. doi: 10.1016/j.biortech.2013.07.082 CrossRefPubMedGoogle Scholar
  36. Zhu L, Gao K, Qi J, Jin J, Xu X (2014) Enhanced reductive transformation of p-chloronitrobenzene in a novel bioelectrode–UASB coupled system. Bioresour Technol 167:303–309. doi: 10.1016/j.biortech.2014.05.116 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sávia Gavazza
    • 1
    • 2
  • Juan J. L. Guzman
    • 1
  • Largus T. Angenent
    • 1
    Email author
  1. 1.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA
  2. 2.Environmental Engineering Laboratory, Agreste Academic CenterFederal University of PernambucoCaruaruBrazil

Personalised recommendations