, Volume 26, Issue 1, pp 65–76

The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus

Original Paper


Although information about the ability of some filamentous fungi to biodegrade organophosphonates is available, the knowledge about accompanying changes in fungal metabolism is very limited. The aim of our study was to determine the utilization of the chosen, structurally diverse aminophosphonates by Aspergillus terreus (Thom), in the context of the behaviour of this fungus while growing in unfavourable conditions, namely the lack of easily available phosphates. We found that all the studied compounds were utilized by fungus as nutritive sources of phosphorus, however, their effect on the production of fungal biomass depended on their structure. We also observed an interesting change in the metabolism of A. terreus; namely the overproduction of 2,4-di-tert-butylphenol (2,4-DTBP), which is known to possess fungistatic activity. In the case of our study, the biosynthesis of this compound was induced by phosphorus starvation, caused either by the lack of that element in the medium, or the poor degradation of phosphonate.


Filamentous fungi Aspergillus terreus Phosphonate utilization 2,4-di-tert-butylphenol 


  1. Adams MM, Gomez-Garcia MR, Grossman AR, Bhaya D (2008) Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcu sp. from microbial mats. J Bacteriol 190:8171–8184. doi:10.1128/JB.01011-08 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. PNAS 103:19302–19307. doi:10.1073/pnas.0609508103 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bujacz B, Wieczorek P, Krzyśko-Łupicka T, Gołąb Z, Lejczak B, Kafarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61:2905–2910PubMedCentralPubMedGoogle Scholar
  4. Caccavo F, Ramsing NB, Costerton JW (1996) Morphological and metabolic responses to starvation by the dissimilatory metal-reducing bacterium Shewanella alga BrY. Appl Environ Microbiol 62:4678–4682PubMedCentralPubMedGoogle Scholar
  5. Carvalho MB, Martins I, Leitao MC, Garcia H, Rodrigues C, Romao VS, McLellan I, Hursthouse A, Pereira CS (2009) Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J Ind Microbiol Biotechnol 36:1249–1256. doi:10.1007/s10295-009-0603-2 PubMedCrossRefGoogle Scholar
  6. Castro JV, Peralba MCR, Ayub MAZ (2007) Biodegradation of the herbicide glyphosate by filamentous fungi in platform shaker and batch bioreactor. J Environ Sci Health B 42:883–886. doi:10.1080/03601230701623290 PubMedCrossRefGoogle Scholar
  7. Dhami S, Sanchita, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem 62:6138–6146. doi:10.1021/jf5001138 CrossRefGoogle Scholar
  8. Forlani G, Prearo V, Wieczorek D, Kafarski P, Lipok J (2011) Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater. Enzym Microb Technol 48:299–305. doi:10.1016/j.enzmictec.2010.12.005 CrossRefGoogle Scholar
  9. Fuqua C, Greenberg EP (1998) Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 1:183–189PubMedCrossRefGoogle Scholar
  10. Han TL, Cannon RD, Villas-Boas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763. doi:10.1016/j.fgb.2011.04.002 PubMedCrossRefGoogle Scholar
  11. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619. doi:10.1128/EC.5.4.613-619.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Jung J, Noh J, Park W (2011) Physiological and metabolic responses for hexadecane degradation in Acinetobacter oleivorans DR1. J Microbiol 49:208–215. doi:10.1007/s12275-011-0395-8 PubMedCrossRefGoogle Scholar
  13. Klement T, Buchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431. doi:10.1016/j.biortech.2012.11.141 PubMedCrossRefGoogle Scholar
  14. Klimek-Ochab M, Lejczak B, Forlani G (2003) A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source. FEMS Microbiol Lett 222:205–209. doi:10.1016/S0378-1097(03)00301-X PubMedCrossRefGoogle Scholar
  15. Klimek-Ochab M, Obojska A, Picco AM, Lejczak B (2007) Isolation and characterization of two new microbial strains capable of degradation of the naturally occurring organophosphonate—ciliatine. Biodegradation 18:223–231. doi:10.1007/s10532-006-9057-7 PubMedCrossRefGoogle Scholar
  16. Klimek-Ochab M, Much A, Żymańczyk-Duda E (2014) 2-Aminoethylphosphonate utilization by the cold-adapted Geomyces pannorum P11 strain. Curr Microbiol 68:330–335. doi:10.1007/s00284-013-0485-4 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Knepper TP (2003) Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. Trends Anal Chem 22:708–724. doi:10.1016/S0165-9936(03)01008-2 CrossRefGoogle Scholar
  18. Krzyśko-Łupicka T, Orlik A (1997) The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 34:2601–2605CrossRefGoogle Scholar
  19. Krzyśko-Łupicka T, Strof W, Kubś K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552PubMedCrossRefGoogle Scholar
  20. Li Z, Nair SK (2012) Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 21:1403–1417. doi:10.1002/pro.2132 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Lipok J, Cierpicki T, Kafarski P (2002) Degradation of amino-(3-methoxyphenyl)- methanephosphonic acid by Alternaria sp. Phosphorus Sulphur Silicon 177:1657–1660. doi:10.1080/10426500212319 CrossRefGoogle Scholar
  22. Lipok J, Wieczorek D, Jewginski M, Kafarski P (2009) Prospects of in vivo P-31 NMR method in glyphosate degradation studies in whole cell system. Enzym Microb Technol 44:11–16. doi:10.1016/j.enzmictec.2008.09.011 CrossRefGoogle Scholar
  23. Loh KC, Cao B (2008) Paradigm in biodegradation using Pseudomonas putida–a review of proteomics studies. Enzym Microb Technol 43:1–12. doi:10.1016/j.enzmictec.2008.03.004 CrossRefGoogle Scholar
  24. Lopez JLC, Sanchez Perez JA, Fernandez Sevilla JM, Rodriguez Porcel EM, Chisti Y (2005) Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 116:61–77CrossRefGoogle Scholar
  25. Madhusudhan KT, McLaughlin R, Komori N, Matsumoto H (2003) Identification of a major protein upon phosphate starvation of Pseudomonas aeruginosa PAO1. J Basic Microbiol 43:36–46. doi:10.1002/jobm.200390002 PubMedCrossRefGoogle Scholar
  26. Nitsche BM, Jorgensen TR, Akeroyd M, Meyer V, Ram AFJ (2012) The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 13:380. doi:10.1186/1471-2164-13-380 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Pollack JK, Li ZJ, Marten MR (2008) Fungal mycelia show lag time before re-growth on endogenous carbon. Biotechnol Bioeng 100:458–465. doi:10.1002/bit.21779 PubMedCrossRefGoogle Scholar
  28. Quinn JP, Kulakova AN, Cooley NA, McGrath JW (2007) New ways to break an old bond: the bacterial carbon–phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ Microbiol 9:2392–2400. doi:10.1111/j.1462-2920.2007.01397.x PubMedCrossRefGoogle Scholar
  29. Raina S, Odell M, Keshavarz T (2010) Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J Biotechnol 148:91–98. doi:10.1016/j.jbiotec.2010.04.009 PubMedCrossRefGoogle Scholar
  30. Raina S, De Vizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47:843–852. doi:10.1016/j.procbio.2012.02.021 CrossRefGoogle Scholar
  31. Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113:383–398. doi:10.1111/j.1365-2672.2012.05330.x PubMedCrossRefGoogle Scholar
  32. Sang MK, Do Kim J, Kim BS, Kim KD (2011) Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666–678. doi:10.1094/PHYTO-08-10-0224 PubMedCrossRefGoogle Scholar
  33. Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514. doi:10.1099/mic.0.27883-0 PubMedCrossRefGoogle Scholar
  34. Sobera M, Wieczorek P, Lejczak B, Kafarski P (1997) Organophosphonate utilization by the wild-type strain of Cladosporium resinae. Toxicol Environ Chem 61:229–235. doi:10.1080/02772249709358488 CrossRefGoogle Scholar
  35. Staszczak M (2008) The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation. FGB 45:328–337. doi:10.1016/j.fgb.2007.10.017 CrossRefGoogle Scholar
  36. Studnik H, Liebsch S, Forlani G, Wieczorek D, Kafarski P, Lipok J (2015) Amino polyphosphonates—chemical features and practical uses, environmental durability and biodegradation. New Biotechnol 32:1–6. doi:10.1016/j.nbt.2014.06.007 CrossRefGoogle Scholar
  37. Tayung K, Barik BP, Jha DK (2010) Antifungal activity and biocontrol potential of metabolite produced by an endophytic Fusarium (MTCC-9622) against some postharvest pathogens. J Agric Technol 6:409–419Google Scholar
  38. Ternan NG, McGrath JW, McMullan G, Quinn JP (1998) Organophosphonates: occurrence, synthesis and biodegradation by microorganisms. World J Microbiol Biotechnol 14:635–647CrossRefGoogle Scholar
  39. Tseng CH, Tang SL (2014) Marine microbial metagenomics: from individual to the environment. Int J Mol Sci 15:8878–8892. doi:10.3390/ijms15058878 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Wariishi H (2000) Fungal metabolism of environmentally persistent compounds: substrate recognition and metabolic response. Biotechnol Bioprocess Eng 5:422–430CrossRefGoogle Scholar
  41. Xie X, Wilkinson HH, Correa A, Lewis ZA, Bell-Pedersen D, Ebbole DJ (2004) Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. FGB 41:1104–1119. doi:10.1016/j.fgb.2004.08.009 CrossRefGoogle Scholar
  42. Zboińska E, Maliszewska I, Lejczak B, Kafarski P (1992) Degradation of organophosphonates by Penicillium citrinum. Lett Appl Microbiol 15:269–272CrossRefGoogle Scholar
  43. Zeinali M, Vossoughi M, Ardestani SK, Babanezhad E, Masoumian M (2007) Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microbiol 47:534–539. doi:10.1002/jobm.200700283 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Paweł Lenartowicz
    • 1
  • Paweł Kafarski
    • 1
  • Jacek Lipok
    • 1
  1. 1.Faculty of ChemistryOpole UniversityOpolePoland

Personalised recommendations