, Volume 25, Issue 3, pp 447–457 | Cite as

Biodegradation of microcystin-LR and-RR by a novel microcystin-degrading bacterium isolated from Lake Taihu

  • Fei Yang
  • Yuanlong Zhou
  • Rongli Sun
  • Haiyan Wei
  • Yunhui Li
  • Lihong Yin
  • Yuepu Pu
Original Article


Microcystin-LR (MC-LR) and microcystin-RR (MC-RR) are the two most common microcystins (MCs) present in fresh water posing a direct threat to public health because of their hepatotoxicity. A novel MC-degrading bacterium designated MC-LTH1 capable of degrading MC-LR and -RR was isolated, and the degradation rates and mechanisms of MC-LR and -RR for this bacterium were investigated. The bacterium was identified as Bordetella sp. and shown to possess a homologous mlrA gene responsible for degrading MCs. To the best of our knowledge, this is the first report of mlrA gene detection in Bordetella species. MC-LR and -RR were completely degraded separately at rates of 0.31 mg/(L h) and 0.17 mg/(L h). However, the degradation rates of MC-LR and -RR decreased surprisingly to 0.27 mg/(L h) and 0.12 mg/(L h), respectively, when both of them were simultaneously present. Degradation products were identified by high performance liquid chromatography coupled with time-of-flight mass spectrometry. Adda (m/z 332.2215, C20H29NO3) commonly known as a final product of MC degradation by isolated bacteria was detected as an intermediate in this study. Linearized MC-LR (m/z 1013.5638, C49H76N10O13), linearized MC-RR (m/z 1056.4970, C49H77N13O13), and tetrapeptide (m/z 615.3394, C32H46N4O8) were also detected as intermediates. These results indicate that the bacterial strain MC-LTH1 is quite efficient for the detoxification of MC-LR and MC-RR, and possesses significant bioremediation potential.


Biodegradation Microcystin Adda Bordetella mlrA 



The authors are grateful to Michael Cunningham from the University of Maryland for help with language polishing, and Guangcan Zhu, Ran Yu, and Ying Zhan for help on HPLC–TOF-MS data analysis. This research was supported by the National Natural Science Foundation of China (30972440), the National Science and Technology Major Project (2012ZX07101-005), and the Jiangsu Province postgraduate Innovation Project (CX10B–087Z).

Supplementary material

10532_2013_9673_MOESM1_ESM.pdf (501 kb)
Supplementary material 1 (PDF 500 kb)


  1. Alamri SA (2012) Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake. Saudi J Biol Sci 19(4):435–440. doi:10.1016/j.sjbs.2012.06.006 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62(11):4086–4094PubMedCentralPubMedGoogle Scholar
  3. Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL (2001) Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ Toxicol 16(6):523–534. doi:10.1002/tox.10013 PubMedCrossRefGoogle Scholar
  4. Bourne DG, Blakeley RL, Riddles P, Jones GJ (2006) Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Res 40(6):1294–1302. doi:10.1016/j.watres.2006.01.022 PubMedCrossRefGoogle Scholar
  5. Chen W, Song LR, Peng L, Wan N, Zhang XM, Gan NQ (2008) Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions. Water Res 42(3):763–773. doi:10.1016/j.watres.2007.08.007 PubMedCrossRefGoogle Scholar
  6. Chen J, Hu LB, Zhou W, Yan SH, Yang JD, Xue YF, Shi ZQ (2010) Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. Int J Mol Sci 11(3):896–911. doi:10.3390/ijms11030896 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen P, Zhu LY, Fang SH, Wang CY, Shan GQ (2012) Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environ Sci Technol 46(4):2345–2351. doi:10.1021/es2036338 PubMedCrossRefGoogle Scholar
  8. Codd GA, Bell SG, Kaya K, Ward CJ, Beattie KA, Metcalf JS (1999) Cyanobacterial toxins, exposure routes and human health. Eur J Phycol 34(4):405–415. doi:10.1017/s0967026299002255 CrossRefGoogle Scholar
  9. Gagala I, Mankiewicz-Boczek J (2012) The natural degradation of microcystins (cyanobacterial hepatotoxins) in fresh water—the future of modern treatment systems and water quality improvement. Pol J Environ Stud 21(5):1125–1139Google Scholar
  10. Harada K, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K (2004) Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44(1):107–109. doi:10.1016/toxicon.2004.04.003 PubMedCrossRefGoogle Scholar
  11. Ho L, Hoefel D, Saint CP, Newcombe G (2007) Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res 41(20):4685–4695. doi:10.1016/j.watres.2007.06.057 PubMedCrossRefGoogle Scholar
  12. Hu LB, Yang JD, Zhou W, Yin YF, Chen J, Shi ZQ (2009) Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria. N Biotechnol 26(3–4):205–211. doi:10.1016/j.nbt.2009.09.001 PubMedCrossRefGoogle Scholar
  13. Imanishi S, Kato H, Mizuno M, Tsuji K, Harada K (2005) Bacterial degradation of microcystins and nodularin. Chem Res Toxicol 18(3):591–598. doi:10.1021/tx049677g PubMedCrossRefGoogle Scholar
  14. Ito E, Takai A, Kondo F, Masui H, Imanishi S, Harada K (2002) Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. Toxicon 40(7):1017–1025. doi:10.1016/S0041-0101(02)00099-5 PubMedCrossRefGoogle Scholar
  15. Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins 2(4):228–235. doi:10.1002/nt.2620020412 PubMedCrossRefGoogle Scholar
  16. Li JM, Shimizu K, Sakharkar MK, Utsumi M, Zhang ZY, Sugiura N (2011) Comparative study for the effects of variable nutrient conditions on the biodegradation of microcystin-LR and concurrent dynamics in microcystin-degrading gene abundance. Bioresour Technol 102(20):9509–9517. doi:10.1016/j.biortech.2011.07.112 PubMedCrossRefGoogle Scholar
  17. Li JM, Shimizu K, Maseda H, Lu ZJ, Utsumi M, Zhang ZY, Sugiura N (2012) Investigations into the biodegradation of microcystin-LR mediated by the biofilm in wintertime from a biological treatment facility in a drinking-water treatment plant. Bioresour Technol 106:27–35. doi:10.1016/j.biortech.2011.11.099 PubMedCrossRefGoogle Scholar
  18. Liu YQ, Xie P, Zhang DW, Wen ZR (2008) Seasonal dynamics of microcystins with associated biotic and abiotic parameters in two bays of Lake Taihu, the third largest freshwater lake in China. Bull Environ Contam Toxicol 80(1):24–29. doi:10.1007/s00128-007-9293-5 PubMedCrossRefGoogle Scholar
  19. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264(2):187–192. doi:10.1016/0014-5793(90)80245-E PubMedCrossRefGoogle Scholar
  20. Manage PM, Edwards C, Singh BK, Lawton LA (2009) Isolation and identification of novel microcystin-degrading bacteria. Appl Environ Microbiol 75(21):6924–6928. doi:10.1128/aem.01928-09 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Park HD, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16(4):337–343. doi:10.1002/tox.1041 PubMedCrossRefGoogle Scholar
  22. Saito T, Okano K, Park HD, Itayama T, Inamori Y, Neilan BA, Burns BP, Sugiura N (2003) Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese. FEMS Microbiol Lett 229(2):271–276. doi:10.1016/s0378-1097(03)00847-4 PubMedCrossRefGoogle Scholar
  23. Shimizu K, Maseda H, Okano K, Kurashima T, Kawauchi Y, Xue Q, Utsumi M, Zhang ZY, Sugiura N (2012) Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1. J Biosci Bioeng 114(6):630–634. doi:10.1016/j.jbiosc.2012.07.004 PubMedCrossRefGoogle Scholar
  24. Song L, Chen W, Peng L, Wan N, Gan N, Zhang X (2007) Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res 41(13):2853–2864. doi:10.1016/j.watres.2007.02.013 PubMedCrossRefGoogle Scholar
  25. Takenaka S, Watanabe MF (1997) Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere 34(4):749–757. doi:10.1016/s0045-6535(97)00002-7 PubMedCrossRefGoogle Scholar
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Tsuji K, Asakawa M, Anzai Y, Sumino T, Harada K (2006) Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere 65(1):117–124. doi:10.1016/j.chemosphere.2006.02.018 PubMedCrossRefGoogle Scholar
  28. Valeria AM, Ricardo EJ, Stephan P, Alberto WD (2006) Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Cordoba—Argentina). Biodegradation 17(5):447–455. doi:10.1007/s10532-005-9015-9 PubMedCrossRefGoogle Scholar
  29. Wang JF, Wu PF, Chen J, Yan H (2010) Biodegradation of microcystin-RR by a new isolated Sphingopyxis sp. USTB-05. Chin J Chem Eng 18(1):108–112. doi:10.1016/s1004-9541(08)60330-4 CrossRefGoogle Scholar
  30. Wang SC, Geng ZZ, Wang Y, Tong ZH, Yu HQ (2012) Essential Roles of p53 and MAPK cascades in microcystin-LR-induced germline apoptosis in Caenorhabditis elegans. Environ Sci Technol 46(6):3442–3448. doi:10.1021/es203675y PubMedCrossRefGoogle Scholar
  31. Yan H, Wang JF, Chen J, Wei W, Wang HS, Wang H (2012) Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05. Chemosphere 87(1):12–18. doi:10.1016/j.chemosphere.2011.11.030 PubMedCrossRefGoogle Scholar
  32. Yang H, Xie P, Xu J, Zheng L, Deng D, Zhou Q, Wu S (2006) Seasonal variation of microcystin concentration in Lake Chaohu, a shallow subtropical lake in the People’s Republic of China. Bull Environ Contam Toxicol 77(3):367–374. doi:10.1007/s00128-006-1075-y PubMedCrossRefGoogle Scholar
  33. Yang F, Wei HY, Li XQ, Li YH, Li XB, Yin LH, Pu YP (2013) Isolation and characterization of an algicidal bacterium indigenous to Lake Taihu with a red pigment able to lyse Microcystis aeruginosa. Biomed Environ Sci 26(2):148–154. doi:10.3967/0895-3988.2013.02.009 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fei Yang
    • 1
  • Yuanlong Zhou
    • 1
  • Rongli Sun
    • 1
  • Haiyan Wei
    • 1
  • Yunhui Li
    • 1
  • Lihong Yin
    • 1
  • Yuepu Pu
    • 1
  1. 1.Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingChina

Personalised recommendations