Biodegradation

, Volume 25, Issue 3, pp 351–371 | Cite as

Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments

  • E. Ballarini
  • C. Beyer
  • R. D. Bauer
  • C. Griebler
  • S. Bauer
Original Article

Abstract

The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic / anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.

Keywords

Competitive biodegradation Isotope fractionation Numerical modeling Transverse mixing 

References

  1. Ballarini E, Bauer S, Eberhardt C, Beyer C (2012) Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design. J Contam Hydrol 134–135:22–36PubMedCrossRefGoogle Scholar
  2. Ballarini E, Bauer S, Eberhardt C, Beyer C (2013) Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling. Ground Water. doi:10.1111/gwat.12066 PubMedGoogle Scholar
  3. Barry DA, Prommer H, Miller CT, Engesgaard P, Brun A, Zheng C (2002) Modelling the fate of oxidisable organic contaminants in groundwater. Adv Water Res 25(8–12):945–983CrossRefGoogle Scholar
  4. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res. doi:10.1029/2004WR003878 Google Scholar
  5. Bauer RD, Maloszewski P, Zhang Y, Meckenstock RU, Griebler C (2008) Mixing-controlled biodegradation in a toluene plume—results from two-dimensional laboratory experiments. J Contam Hydrol 96:150–168PubMedCrossRefGoogle Scholar
  6. Bauer RD, Rolle M, Bauer S, Eberhardt C, Grathwohl P, Kolditz O, Meckenstock RU, Griebler C (2009a) Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. J Contam Hydrol 105:56–68PubMedCrossRefGoogle Scholar
  7. Bauer RD, Rolle M, Bauer S, Kürzinger P, Grathwohl P, Meckenstock RU, Griebler C (2009b) Two-dimensional flow-through microcosms—versatile test systems to study biodegradation processes in porous aquifers. J Hydrol 369:284–295CrossRefGoogle Scholar
  8. Beyer C, Chen C, Gronewold J, Kolditz O, Bauer S (2007) Determination of first-order degradation rate constants from monitoring networks. Ground Water 45(6):774–785PubMedCrossRefGoogle Scholar
  9. Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850PubMedCrossRefGoogle Scholar
  10. Blum P, Hunkeler D, Weede M, Beyer C, Grathwohl P, Morasch B (2009) Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis–Menten kinetics and stable carbon isotopes. J Contam Hydrol 105:118–130PubMedCrossRefGoogle Scholar
  11. Bockelmann A, Zamfirescu D, Ptak T, Grathwohl P, Teutsch G (2003) Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: a case study. J Contam Hydrol 60(1–2):97–121PubMedCrossRefGoogle Scholar
  12. Bothe H, Jost G, Schloter M, Ward BB, Witzel K (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690PubMedCrossRefGoogle Scholar
  13. Centler F, Shao H, De Biase C, Park CH, Regnier P, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput Geosci 36(3):397–405CrossRefGoogle Scholar
  14. Chapelle FH, Bradley PM, Lovley DR, Vroblesky DA (1996) Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water 34(4):691–698CrossRefGoogle Scholar
  15. Clement TP, Peyton BM, Skeen RS, Jennings DA, Petersen JN (1997) Microbial growth and transport in porous media under denitrification conditions: experiments and simulations. J Contam Hydrol 24(3–4):269–285CrossRefGoogle Scholar
  16. Daum M, Zimmer W, Papen H, Kloos K, Nawrath K, Bothe H (1998) Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier pseudomonas putida. Curr Microbiol 37(4):281–288PubMedCrossRefGoogle Scholar
  17. Declercq I, Cappuyns V, Duclos Y (2012) Monitored natural attenuation (MNA) of contaminated soils: state of the art in Europe—a critical evaluation. Sci Total Environ 426:393–405PubMedCrossRefGoogle Scholar
  18. Gillham RW, Starr RG, Miller DJ (1990) A device for in situ determination of geochemical transport parameters, 2: biochemical reactions. Ground Water 28:858–862CrossRefGoogle Scholar
  19. Huang WE, Oswald SE, Lerner DN, Smith CC, Zheng C (2003) Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply. Environ Sci Tech 37(9):1905–1911CrossRefGoogle Scholar
  20. Hunkeler D, Anderson N, Aravena R, Bernasconi SM, Buttler BJ (2001) Hydrogen and carbon isotope fractionation during aerobic biodegradation of benzene. Environ Sci Technol 35:3462–3467PubMedCrossRefGoogle Scholar
  21. Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ Sci Technol 39:5975–5981PubMedCrossRefGoogle Scholar
  22. Jin Q, Bethke CM (2007) The thermodynamics and kinetics of microbial metabolism. Am J Sci 307:643–677CrossRefGoogle Scholar
  23. Kindred JS, Celia MA (1989) Contaminant transport and biodegradation: 2. Conceptual model and test simulations. Water Resour Res 25(6):1149–1159CrossRefGoogle Scholar
  24. Kleerebezem R, van Loosdrecht MCM (2010) A generalized method for thermodynamic state analysis of environmental systems. Crit Rev Environ Sci Technol 40:1–54CrossRefGoogle Scholar
  25. Klenk ID, Grathwohl P (2002) Transverse vertical dispersion in groundwater and the capillary fringe. J Contam Hydrol 58(1–2):111–128PubMedCrossRefGoogle Scholar
  26. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinf 6(3):225–244Google Scholar
  27. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI (2012a) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599. doi:10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  28. Kolditz O, Görke UJ, Shao H, Wang W (2012b) Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (lecture notes in computational science and engineering). Springer, BerlinCrossRefGoogle Scholar
  29. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2013) OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems: code development and application at a representative CO2 storage formation in Northern Germany. Acta Geotech. doi:10.1007/s11440-013-0234-7 (in print)Google Scholar
  30. Mancini SA, Ulrich CA, Lacrampe-Couloume G, Sleep B, Edwards EA, Sherwood Lollar B (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69:191–198PubMedCentralPubMedCrossRefGoogle Scholar
  31. Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W, Richnow HH (1999) 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol 1:409–414PubMedCrossRefGoogle Scholar
  32. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75:215–255PubMedCrossRefGoogle Scholar
  33. Morasch B, Richnow HH, Schink B, Meckenstock RU (2001) Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl Environ Microbiol 67:4842–4849PubMedCentralPubMedCrossRefGoogle Scholar
  34. Morasch B, Richnow HH, Schink B, Vieth A, Meckenstock RU (2002) Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons. Appl Environ Microbiol 68:5191–5194PubMedCentralPubMedCrossRefGoogle Scholar
  35. Nambi IM, Werth CJ, Sanford RA, Valocchi AJ (2003) Pore-scale analysis of anaerobic halo-respiring bacterial growth along the transverse mixing zone of an etched silicon pore network. Environ Sci Tech 37(24):5617–5624CrossRefGoogle Scholar
  36. Olsson A, Grathwohl P (2007) Transverse dispersion of non-reactive tracers in porous media: a new nonlinear relationship to predict dispersion coefficients. J Contam Hydrol 92:149–161PubMedCrossRefGoogle Scholar
  37. Peter A, Steinbach A, Liedl R, Ptak T, Michaelis W, Teutsch G (2004) Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses. J Contam Hydrol 71:127–154PubMedCrossRefGoogle Scholar
  38. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103PubMedCrossRefGoogle Scholar
  39. Rein A, Bauer S, Dietrich P, Beyer C (2009) Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. J Contam Hydrol 108:118–133PubMedCrossRefGoogle Scholar
  40. Roden EE, Jin Q (2011) Thermodynamics of microbial growth coupled to metabolism of glucose, ethanol, short-chain organic acids, and hydrogen. Appl Environ Microbiol 77:1907–1909PubMedCentralPubMedCrossRefGoogle Scholar
  41. Rolle M, Chiogna G, Bauer R, Griebler C, Grathwohl P (2010) Isotopic fractionation by transverse dispersion: flow-through microcosms and reactive transport modeling study. Environ Sci Technol 44:6167–6173PubMedCrossRefGoogle Scholar
  42. Schäfer D, Schäfer W, Kinzelbach W (1998) Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model. J Contam Hydrol 31(1–2):167–186CrossRefGoogle Scholar
  43. Scheibe TD, Dong H, Xie Y (2007) Correlation between bacterial attachment rate coefficients and hydraulic conductivity and its effect on field-scale bacterial transport. Adv Water Resour 30(6–7):1571–1582CrossRefGoogle Scholar
  44. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments—a critical review of state of the art, prospects and future challenges. Anal Bioanal Chem 378:283–300PubMedCrossRefGoogle Scholar
  45. Sherwood Lollar B, Slater GF, Ahad J, Sleep B, Spivack J, Mackenzie P, Brennan M (1999) Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: implications for intrinsic bioremediation. Org Geochem 30:813–820CrossRefGoogle Scholar
  46. Stelzer N, Büning C, Pfeifer F, Dohrmann AB, Tebbe CC, Nijenhuis I, Kästner M, Richnow HH (2006) In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers. Org Geochem 37:1394–1410CrossRefGoogle Scholar
  47. Stolpovsky K, Martinez-Lavanchy P, Heipieper HJ, Van Cappellen P, Thullner M (2011) Incorporating dormancy in dynamic microbial community models. Ecol Model 222(17):3092–3102CrossRefGoogle Scholar
  48. Strobel KL, McGowan S, Bauer RD, Griebler C, Liu J, Ford RM (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108:2070–2077PubMedCrossRefGoogle Scholar
  49. Thornton SF, Quigley S, Spence MJ, Banwart SA, Bottrell S, Lerner DN (2001) Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer. J Contam Hydrol 53:233–267PubMedCrossRefGoogle Scholar
  50. Thullner M, Mauclaire L, Schroth MH, Kinzelbach W, Zeyer J (2002) Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media. J Contam Hydrol 58:169–189PubMedCrossRefGoogle Scholar
  51. Thullner M, Schroth MH, Zeyer J, Kinzelbach W (2004) Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field. J Contam Hydrol 70:37–62PubMedCrossRefGoogle Scholar
  52. Tuxen N, Albrechtsen HJ, Bjerg PL (2006) Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. J Contam Hydrol 85:179–194PubMedCrossRefGoogle Scholar
  53. Van Breukelen BM, Prommer H (2008) Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ Sci Technol 42(7):2457–2463PubMedCrossRefGoogle Scholar
  54. Vandevivere P, Baveye P (1992) Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Appl Environ Microbiol 58(5):1690–1698PubMedCentralPubMedGoogle Scholar
  55. Wang W, Kosakowski G, Kolditz O (2009) A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput Geosci 35:1631–1641CrossRefGoogle Scholar
  56. Watson IA, Oswald SE, Banwart SA, Crouch RS, Thornton SF (2005) Modeling the dynamics of fermentation and respiratory processes in a groundwater plume of phenolic contaminants interpreted from laboratory- to field-scale. Environ Sci Technol 39:8829–8839PubMedCrossRefGoogle Scholar
  57. Wiedemeier TH, Rifai HS, Wilson TJ, Newell C (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. Wiley, HobokenCrossRefGoogle Scholar
  58. Wöhlbrand L, Kallerhoff B, Lange D, Hufnage P, Thiermann J, Reinhardt R, Rabus R (2007) Functional proteomic view of metabolic regulation in Aromatoleum aromaticum strain EbN1. Proteomics 7:2222–2239PubMedCrossRefGoogle Scholar
  59. Wood BD, Dawson CN (1992) Effects of lagand maximum growth in contaminant transport and biodegradation modeling. Mathematical Modeling in Water ResourcesGoogle Scholar
  60. Zysset A, Stauffer F, Dracos T (1994) Modeling of reactive groundwater transport governed by biodegradation. Water Resour Res 30(8):2423–2434CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • E. Ballarini
    • 1
  • C. Beyer
    • 1
  • R. D. Bauer
    • 2
  • C. Griebler
    • 2
  • S. Bauer
    • 1
  1. 1.Institute of GeosciencesUniversity of KielKielGermany
  2. 2.Institute of Groundwater EcologyHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations