, Volume 25, Issue 2, pp 301–312 | Cite as

Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp.

  • Jacob L. Dillehay
  • Kimberly S. Bowman
  • Jun Yan
  • Fred A. Rainey
  • William M. MoeEmail author
Original Article


When chlorinated alkanes are present as soil or groundwater pollutants, they often occur in mixtures. This study evaluated substrate interactions during the anaerobic reductive dehalogenation of chlorinated alkanes by the type strains of two Dehalogenimonas species, D. lykanthroporepellens and D. alkenigignens. Four contaminant mixtures comprised of combinations of the chlorinated solvents 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were assessed for each species. Chlorinated solvent depletion and daughter product formation determined as a function of time following inoculation into anaerobic media revealed preferential dechlorination of 1,1,2-TCA over both 1,2-DCA and 1,2-DCP for both species. 1,2-DCA in particular was not dechlorinated until 1,1,2-TCA reached low concentrations. In contrast, both species concurrently dechlorinated 1,2-DCA and 1,2-DCP over a comparably large concentration range. This is the first report of substrate interactions during chlorinated alkane dehalogenation by pure cultures, and the results provide insights into the chlorinated alkane transformation processes that may be expected for contaminant mixtures in environments where Dehalogenimonas spp. are present.


Dechlorination Dehalorespiration Inhibition Mixtures Dehalogenimonas 



This research was funded by NPC Services, Inc. and the Governor’s Biotechnology Initiative of the Louisiana Board of Regents Grant BOR#15 Enhancement of the LSU Hazardous Substance Research Center Environmental Biotechnology Initiative.


  1. Adamson DT, Parkin GF (1999) Biotransformation of mixtures of chlorinated aliphatic hydrocarbons by an acetate-grown methanogenic enrichment culture. Water Res 33:1482–1494. doi: 10.1016/S0043-1354(98)00344-3 CrossRefGoogle Scholar
  2. Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethane-dechlorinating enrichment culture. Environ Sci Technol 34:1959–1965. doi: 10.1021/es990809f CrossRefGoogle Scholar
  3. Aulenta F, Bianchi A, Majone M, Papini MP, Potalivo M, Tandoi V (2005) Assessment of the potential for natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Environ Int 31:185–190. doi: 10.1016/j.envint.2004.09.014 PubMedCrossRefGoogle Scholar
  4. Bowman KS, Moe WM, Rash B, Bae HS, Rainey FA (2006) Bacterial diversity of an acidic Louisiana groundwater contaminated by dense nonaquaeous-phase liquid containing chloroethanes and other solvents. FEMS Microbiol Ecol 58:120–133. doi: 10.1111/j.1574-6941.2006.00146.x PubMedCrossRefGoogle Scholar
  5. Bowman KS, Rainey FA, Moe WM (2009) Production of hydrogen by Clostridium species in the presence of chlorinated solvents. FEMS Microbiol Lett 290:188–194. doi: 10.1111/j.1574-6968.2008.01419.x PubMedCrossRefGoogle Scholar
  6. Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM (2013) Dehalogenimonas alkenigignens sp. nov., a chlorinated alkane dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 63:1492–1498. doi: 10.1099/ijs.0.045054-0 PubMedCrossRefGoogle Scholar
  7. Chan WWM, Grostern A, Löffler FE, Edwards EA (2011) Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases. Environ Sci Technol 45:9693–9702. doi: 10.1021/es201260n PubMedCrossRefGoogle Scholar
  8. De Wildeman S, Verstraete W (2003) The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted. Appl Microbiol Biotech 61:94–102. doi: 10.1007/s00253-002-1174-6 CrossRefGoogle Scholar
  9. De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003) Stereoselective microbial dehalorespiration with vicinal dechlorinated alkanes. Appl Environ Microbiol 69:5643–5647. doi: 10.1128/AEM.69.9.5643-5647.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Dolfing J (2003) Thermodynamic considerations for dehalogenation. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental applications. Kluwer Academic Publishers, Boston, pp 89–114Google Scholar
  11. Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72:7849–7856. doi: 10.1128/AEM.01269-06 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hughes JB, Parkin GF (1996) Individual biotransformation rates in chlorinated aliphatic mixtures. J Environ Eng 122:99–106. doi: 10.1061/(ASCE)0733-9372(1996)122:2(99) CrossRefGoogle Scholar
  13. Inoue A, Horikoshi K (1991) Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J Ferment Bioeng 71:194–196. doi: 10.1016/0922-338X(91)90109-T CrossRefGoogle Scholar
  14. Jones EJP, Voytek MA, Lorah MM, Kirshtein JD (2006) Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates. Bioremediat J 10:153–168. doi: 10.1080/10889860601021399 CrossRefGoogle Scholar
  15. Kieboom J, de Bont JAM (2000) Mechanisms of organic solvent resistance in bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, pp 393–402Google Scholar
  16. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Muller JA, Fullerton H, Zinder SH, Sporman AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635. doi: 10.1099/ijs.0.034926-0 PubMedCrossRefGoogle Scholar
  17. Maness AD, Bowmann KS, Yan J, Rainey FA, Moe WM (2012) Dehalogenimonas spp. can reductively dehalogenate high concentrations of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane. AMB Express 2:54–60. doi: 10.1186/2191-0855-2-54 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Maymó-Gatell X, Chien Y, Gossett J, Zinder S (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. doi: 10.1126/science.276.5318.1568 PubMedCrossRefGoogle Scholar
  19. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductive dehalogenating bacterium isolated from chlorinated solvent contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697. doi: 10.1099/ijs.0.011502-0 PubMedCrossRefGoogle Scholar
  20. Schanke CA, Wackett LP (1992) Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes. Environ Sci Technol 26:830–833. doi: 10.1021/es00028a025 CrossRefGoogle Scholar
  21. Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Land M, Chang Y, Kyrpides NC, Ovchinnikova G, Hauser L, Lapidus A, Yan J, Bowman KS, da Costa MS, Rainey FA, Moe WM (2012) Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to “Dehalococcoides” strains. Standards in Genomic Sci 6:251–264. doi: 10.4056/sigs.2806097 CrossRefGoogle Scholar
  22. Sikkema J, de Bont JAM, Poolman B (1994) Interaction of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  23. Sikkema J, de Bont JAM, Poolman B (1995) Mechanism of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedCentralPubMedGoogle Scholar
  24. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65:1474–1481. doi: 10.1271/bbb.65.1474 PubMedCrossRefGoogle Scholar
  25. United States Environmental Protection Agency (1996) BIOSCREEN, Natural Attenuation Decision Support System, User’s Manual, Version 1.3. Publication No. EPA/600/R-96/087Google Scholar
  26. United States Environmental Protection Agency (2000) BIOCHLOR, Natural Attenuation Decision Support System, User’s Manual, Version 1.0. Publication No. EPA/600/R-00/008Google Scholar
  27. United States Environmental Protection Agency (2012) Search superfund site information. Accessed 7 Jun 2012
  28. Westrick JJ, Mello JW, Thomas RF (1984) The groundwater supply survey. J Am Water Works Assoc 5:52–59Google Scholar
  29. Yan J, Rash BA, Rainey FA, Moe WM (2009a) Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 11:833–843. doi: 10.1111/j.1462-2920.2008.01804.x PubMedCrossRefGoogle Scholar
  30. Yan J, Rash BA, Rainey FA, Moe WM (2009b) Detection and quantification of Dehalogenimonas and Dehalococcoides populations via PCR-based protocols targeting 16S rRNA genes. Appl Environ Microbiol 75:7560–7564. doi: 10.1128/AEM.01938-09 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Yu R, Peethambaram HS, Falta RW, Verce MF, Henderson JK, Bagwell CE, Brigmon RL, Freedman DL (2013) Kinetics of 1,2-dichloroethane and 1,2-dibromoethane biodegradation in anaerobic enrichment cultures. Appl Environ Microbiol 79:1359–1367. doi: 10.1128/AEM.02163-12 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jacob L. Dillehay
    • 1
  • Kimberly S. Bowman
    • 1
    • 2
  • Jun Yan
    • 1
    • 4
  • Fred A. Rainey
    • 2
    • 3
  • William M. Moe
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  3. 3.Department of Biological SciencesUniversity of Alaska AnchorageAnchorageUSA
  4. 4.Department of Microbiology and Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations