, Volume 25, Issue 1, pp 111–125 | Cite as

Naphthalene biodegradation in temperate and arctic marine microcosms

  • Andrea Bagi
  • Daniela M. Pampanin
  • Anders Lanzén
  • Torleiv Bilstad
  • Roald Kommedal
Original Paper


Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop® system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR–DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day−1 for temperate and 0.068 day−1 for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.


Hydrocarbons Naphthalene Biodegradation Q10 Pyrosequencing DGGE Seawater 



Polycyclic aromatic hydrocarbon




Oil spill contingency and response


Gas chromatography


Polymerase chain reaction


Denaturing gradient gel electrophoresis


Operational taxonomic unit



Financial support from Total E&P Norway is gratefully acknowledged. The sample of arctic water was collected during the 2009 COPOL cruise with R/V Lance. Thanks to cruise leaders Dr. Haakon Hop and Dr. Geir Wing Gabrielsen at the Norwegian Polar Institute for assistance with the logistics and PhD students Alexey K. Pavlov and Pernilla Carlson at UNIS for help with CTD-profiling and sampling of water respectively. Dag Altin is entitled to our special thanks for personally arranging and organizing the sampling and for keeping track of the arctic water until it arrived in our laboratory. Particular thanks go to Emily Lyng (International Research Institute of Stavanger) for revising the manuscript.


  1. Ahn IS, Ghiorse WC, Lion LW, Shuler ML (1998) Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation. Biotechnol Bioeng 59(5):587–594. doi: 10.1002/(SICI)1097-0290(19980905)59:5<587:AID-BIT9>3.0.CO;2-6 PubMedCrossRefGoogle Scholar
  2. Arnosti C, Jørgensen BB, Sagemann J, Thamdrup B (1998) Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser 165:59–70CrossRefGoogle Scholar
  3. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sauren. Zeitschrift für Physik Chemie 4:226–248Google Scholar
  4. Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 30(3):396–403PubMedCentralPubMedGoogle Scholar
  5. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209PubMedCentralPubMedGoogle Scholar
  6. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43(2):260–296PubMedCentralPubMedGoogle Scholar
  7. Bano N, Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68(2):505–518. doi: 10.1128/AEM.68.2.505-518.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bauer JE, Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediment. Appl Environ Microbiol 50(1):81–90PubMedCentralPubMedGoogle Scholar
  9. Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine Environments. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 389–407CrossRefGoogle Scholar
  10. Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5 °C) and bacterial communities associated with degradation. Biodegradation 17(1):71–82. doi: 10.1007/s10532-005-3342-8 PubMedCrossRefGoogle Scholar
  11. Brakstad OG, Faksness L-G (2000) Biodegradation of water-accommodated fractions and dispersed oil in the seawater column. In: Proceedings to the SPE Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, 26–28 June 2000, Stavanger, Norway. Society for Petroleum Engineers (SPE) Paper 61466Google Scholar
  12. Brakstad OG, Bonaunet K, Nordtug T, Johansen Ø (2004) Biotransformation and dissolution of petroleum hydrocarbons in natural flowing seawater at low temperature. Biodegradation 15(5):337–346PubMedCrossRefGoogle Scholar
  13. Brakstad OG, Nonstad I, Faksness L-G, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol 55(3):540–552. doi: 10.1007/s00248-007-9299-x PubMedCrossRefGoogle Scholar
  14. Brakstad OG, Booth AM, Faksness L-G, Aislabie J (2009) Microbial degradation of petroleum compounds in cold marine water and ice. In: Bej AK, Atlas RM (eds) Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press, New York, pp 231–253CrossRefGoogle Scholar
  15. Brauer VS, de Jonge VN, Buma AGJ, Weissing FJ (2009) Does universal temperature dependence apply to communities? An experimental test using natural marine plankton assemblages. Oikos 118:1102–1108. doi: 10.1111/j.1600-0706.2009.17371.x CrossRefGoogle Scholar
  16. Castle DM, Montgomery MT, Kirchman DL (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56(1):55–63. doi: 10.1111/j.1574-6941.2006.00062.x PubMedCrossRefGoogle Scholar
  17. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  18. Chablain PA, Philippe G, Groboillot A, Truffaut N, Guespin-Michel JF (1997) Isolation of soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res Microbiol 148(2):153–161PubMedCrossRefGoogle Scholar
  19. Chao A (1987) Estimating the population size for capture-recaprure data with unequal catchability. Biometrics 43(4):783–791PubMedCrossRefGoogle Scholar
  20. Courtes R, Bahlaoui A, Rambaud A, Deschamps F, Sunde E, Dutrieux E (1995) Ready biodegradability test in seawater: a new methodological approach. Ecotoxicol Environ Saf 31(2):142–148PubMedCrossRefGoogle Scholar
  21. D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389. doi: 10.1038/sj.embor.7400662 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione J-F (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32(10):1521–1528. doi: 10.1007/s00300-009-0652-z CrossRefGoogle Scholar
  23. Deppe U, Richnow H-H, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9(6):461–470. doi: 10.1007/s00792-005-0463-2 PubMedCrossRefGoogle Scholar
  24. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208. doi: 10.1038/nrmicro773 PubMedCrossRefGoogle Scholar
  25. Feng J, Ellis L (2012) Benzoate pathway. University of Minnesota biocatalysis biodegradation database. Accessed 29 Nov 2012
  26. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, Naeem S (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Nat Acad Sci USA 103(35):13104–13109. doi: 103:13104-13109 PubMedCrossRefGoogle Scholar
  27. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Nat Acad Sci USA 105(22):7774–7778. doi: 105:7774-7778 PubMedCrossRefGoogle Scholar
  28. Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64(12):4703–4710PubMedCentralPubMedGoogle Scholar
  29. Gibbs CF, Pugh KB, Andrews AR (1975) Quantitative studies on marine biodegradation of oil II. Effect of temperature. Proc R Soc Lond B 188(1090):83–94. doi: 10.1098/rspb.1975.0004 PubMedCrossRefGoogle Scholar
  30. Giebel HA, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, Brinkhoff T (2011) Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J 5(1):8–19PubMedCrossRefGoogle Scholar
  31. Gilbert JA, Steele JA, Caporaso JG, Steinbru L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Join I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308. doi: 10.1038/ismej.2011.107 PubMedCrossRefGoogle Scholar
  32. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248–2251. doi: 10.1126/science.1061967 PubMedCrossRefGoogle Scholar
  33. Gold G, Rodriguez S (1988) The effect of temperature and salinity on the Setschenow parameters of naphthalene in seawater. Can J Chem 67(5):822–826. doi: 10.1139/v89-127 CrossRefGoogle Scholar
  34. Heitkamp MA, Freeman JP, Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53(1):129–136PubMedCentralPubMedGoogle Scholar
  35. Jenkins ME, Adams MA (2011) Respiratory quotients and Q10 of soil respiration in sub-alpine Australia reflect influences of vegetation types. Soil Biol Biochem 43(6):1266–1274. doi: 10.1016/j.soilbio.2011.02.017 CrossRefGoogle Scholar
  36. Karhu M, Kaakinen J, Kuokkanen T, Rämö J (2009) Biodegradation of light fuel oils in water and soil as determined by the manometric respirometry method. Water Air Soil Pollut 197(1–4):3–14. doi: 10.1007/s11270-008-9752-6 CrossRefGoogle Scholar
  37. Kirchman DL (2008) Microbial ecology of the oceans, 2nd edn. Wiley, Hoboken, ISBN: 978-0-470-04344-8Google Scholar
  38. Knoblauch C, Jørgensen BB, Harder J (1999) Community size and metabolic rates of psychrophilic sulfate reducing bacteria in Arctic marine sediments. Appl Environ Microbiol 65(9):4230–4233PubMedCentralPubMedGoogle Scholar
  39. Kuokkanen T, Vähäoja P, Välimäki I, Lauhanen R (2004) Suitability of the respirometric BOD oxitop method for determining the biodegradability of oils in ground water using forestry hydraulic oils as model compounds. Intern J Environ Anal Chem 84(9):677–689. doi: 10.1080/03067310410001688435 CrossRefGoogle Scholar
  40. Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Øvreås L, Urich T (2012) CREST—classification resources for environmental sequence tags. PLoS ONE 7(11):e49334. doi: 10.1371/journal.pone.0049334 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Latimer JS, Zheng J (2003) The sources, transport, and fate of PAHs in the marine environment. In: Douben PET (ed) PAHs: an ecotoxicological perspective, 1st edn. Wiley, West Sussex. doi: 10.1002/0470867132.ch2 Google Scholar
  42. Lauro FM, Allen MA, Wilkins D, Williams TJ, Cavicchioli R (2011) Psychrophiles: genetics, genomics, evolution. In: Horikochi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook, 1st edn. Springer, Tokyo, pp 865–891CrossRefGoogle Scholar
  43. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315PubMedCentralPubMedGoogle Scholar
  44. McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary UK. Environ Microbiol 9(1):165–176. doi: 10.1111/j.1462-2920.2006.01125.x PubMedCrossRefGoogle Scholar
  45. Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang XJ, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou LW, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Nat Acad Sci USA 102(31):10913–10918. doi: 10.1073/pnas.0504766102 PubMedCrossRefGoogle Scholar
  46. Michaud L, Lo Giudice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar Pollut Bull 49(5–6):405–409. doi: 10.1016/j.marpolbul.2004.02.026 PubMedCrossRefGoogle Scholar
  47. Minas W, Gunkel W (1995) Oil pollution in the North Sea—a microbiological point of view. Helgoländer Meeresuntersuchungen 49(1–4):143–158. doi: 10.1007/BF02368345 CrossRefGoogle Scholar
  48. Moore MN, Livingstone DR, Widdows J (1989) Hydrocarbons in marine mollusks: biological effects and ecological consequences. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press Inc., Boca Raton, pp 291–328Google Scholar
  49. Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2009) Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 37(1):137–147. doi: 10.1111/j.1574-6941.2009.00832.x Google Scholar
  50. OECD (1992) OECD Guidelines for testing of chemicals/section 3: degradation and accumulation. Test number 306: biodgradability in seawater. OECD publishing, Paris, ISBN: 9789264070486Google Scholar
  51. Pampanin DM, Sydnes MO (2013) Polycyclic aromatic hydrocarbons a constituent of petroleum: Presence and influence in the aquatic environment. In: Vladimir K, Kolesnikov A (eds) Hydrocarbon. InTech, Rijeka, ISBN 978-953-51-0927-3Google Scholar
  52. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Nat Acad Sci USA 101(13):4631–4636. doi: 10.1073pnas.0400522101 PubMedCrossRefGoogle Scholar
  53. Quince C, Curtis TP, Sloan WT (2008) The rational exploration of microbial diversity. The ISME Journal 2:997–1006. doi: 10.1038/ismej.2008.69 PubMedCrossRefGoogle Scholar
  54. Quince C, Lanzén A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. doi: 10.1186/1471-2105-12-38 PubMedCentralPubMedCrossRefGoogle Scholar
  55. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0,
  56. Reed M, Johansen Ø, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5(1):3–16CrossRefGoogle Scholar
  57. Reed M, Singsass I, Daling PS, Faksness L-G, Brakstad OG, Hetland B, Hokstad J (2001) Modelling the water-accomodated fraction in OSCAR2000. Proceedings of 2001 International Oil Spill Conference. TampaGoogle Scholar
  58. Robador A, Bruchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11(7):1692–1703. doi: 10.1111/j.1462-2920.2009.01896.x PubMedCrossRefGoogle Scholar
  59. Røberg S, Østerhus JI, Landfald B (2011) Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 34(10):1455–1465. doi: 10.1007/s00300-011-1003-4 CrossRefGoogle Scholar
  60. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  61. Siron R, Pelletier É, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol 28:406–416. doi: 10.1007/BF00211621 CrossRefGoogle Scholar
  62. Stewart PS, Tedaldi DJ, Lewis AR, Goldman E (1993) Biodegradation rates of crude oil in seawater. Water Environ Res 65(7):845–848CrossRefGoogle Scholar
  63. Valentine DL, Mezic I, Macesic S, Crnjaric-Zic N, Ivic S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Nat Acad Sci USA. doi: 10.1073/pnas.1108820109 Google Scholar
  64. Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Regions Sci Tech 53(1):16–41. doi: 10.1016/j.coldregions.2007.06.009 CrossRefGoogle Scholar
  65. Winkler JP, Cherry RS, Schlesinger WH (1996) The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biol Biochem 28(8):1067–1072CrossRefGoogle Scholar
  66. Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49(3):419–432. doi: 10.1016/j.femsec.2004.04.018 PubMedCrossRefGoogle Scholar
  67. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotech 18(3):257–266. doi: 10.1016/j.copbio.2007.04.006 PubMedCrossRefGoogle Scholar
  68. Zeng Y, Essenberg C (2011) Naphthalene pathway map. University of Minnesota biocatalysis biodegradation database. Accessed 29 Nov 2012
  69. Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10(1–2):1–49PubMedCentralGoogle Scholar
  70. Zobell CE, Grant CW, Haas HF (1943) Marine microorganisms which oxidize petroleum hydrocarbons. AAPG Bull 27(9):1175–1193Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andrea Bagi
    • 1
  • Daniela M. Pampanin
    • 2
  • Anders Lanzén
    • 3
  • Torleiv Bilstad
    • 1
  • Roald Kommedal
    • 1
  1. 1.Department of Mathematics and Natural Sciences, Faculty of Science and TechnologyUniversity of StavangerStavangerNorway
  2. 2.International Research Institute of StavangerStavangerNorway
  3. 3.Computational Biology Unit, Uni Computing, Uni Research and Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations