Advertisement

Biodegradation

, Volume 24, Issue 6, pp 765–774 | Cite as

Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron

  • Lea Ellegaard-JensenEmail author
  • Jens Aamand
  • Birthe B. Kragelund
  • Anders H. Johnsen
  • Søren Rosendahl
Original Paper

Abstract

Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.

Keywords

Fungal biodegradation Co-metabolism Pesticide Fungal genetics Phylogenetic relationships 

Notes

Acknowledgments

The authors thank Nora Badawi and Spire Kiersgaard for guidance on the UPLC method and Signe Sjørup and Allan Kastrup for expert technical assistance. The Study was supported by the MIRESOWA project funded by the Danish Council for Strategic Research (Grant No. 2104-08-0012).

References

  1. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812. doi: 10.1016/j.envpol.2009.04.019 PubMedCrossRefGoogle Scholar
  2. El-Bestawy E, Albrechtsen H-J (2007) Effect of nutrient amendments and sterilization on mineralization and/or biodegradation of 14C-labeled MCPP by soil bacteria under aerobic conditions. Int Biodeterior Biodegrad 59(3):193–201CrossRefGoogle Scholar
  3. El-Deeb B, Soltan S, Ali A, Ali K (2000) Detoxication of the herbicide diuron by Pseudomonas sp. Folia Microbiol 45(3):211–216. doi: 10.1007/bf02908946 CrossRefGoogle Scholar
  4. Entry JA, Donnelly PK, Emmingham WH (1996) Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Appl Soil Ecol 3(1):85–90CrossRefGoogle Scholar
  5. Eriksson E, Baun A, Mikkelsen PS, Ledin A (2007) Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å, Denmark. Desalination 215(1–3):187–197CrossRefGoogle Scholar
  6. European Parliament EU (2008) Priority Substances Directive (Directive 2008/105/EC). Official Journal of the European UnionGoogle Scholar
  7. Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107(7):861–871PubMedCrossRefGoogle Scholar
  8. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x PubMedCrossRefGoogle Scholar
  9. Gardes M, Bruns TD (1996) ITS-RFLP matching for identification of fungi. In: Clapp JP (ed) Methods in molecular biology: species diagnostics protocols—PCR and other nucleic acid methods, vol 50. Humana Press Inc., Totowa, pp 177–186Google Scholar
  10. Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage. Environmental Protection Agency, USGoogle Scholar
  11. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192. doi: 10.1038/nrmicro2519 PubMedCrossRefGoogle Scholar
  12. Hussain S, Sørensen SR, Devers-Lamrani M, El-Sebai T, Martin-Laurent F (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere 77(8):1052–1059PubMedCrossRefGoogle Scholar
  13. Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38(13):3041–3050PubMedCrossRefGoogle Scholar
  14. Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47(2):219–225. doi: 10.1007/s00374-010-0505-5 CrossRefGoogle Scholar
  15. Lapworth DJ, Gooddy DC (2006) Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environ Pollut 144(3):1031–1044PubMedCrossRefGoogle Scholar
  16. Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18(2):52–59CrossRefGoogle Scholar
  17. Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic Press, Burlington, pp 341–364CrossRefGoogle Scholar
  18. Rønhede S, Jensen B, Rosendahl S, Kragelund BB, Juhler RK, Aamand J (2005) Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil. Appl Environ Microbiol 71(12):7927–7932. doi: 10.1128/aem.71.12.7927-7932.2005 PubMedCrossRefGoogle Scholar
  19. Simonsen A, Holtze MS, Sørensen SR, Sørensen SJ, Aamand J (2006) Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environ Pollut 144(1):289–295PubMedCrossRefGoogle Scholar
  20. Sørensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–2340. doi: 10.1128/aem.02687-07 PubMedCrossRefGoogle Scholar
  21. Struger J, Grabuski J, Cagampan S, Rondeau M, Sverko E, Marvin C (2011) Occurrence and distribution of sulfonylurea and related herbicides in central Canadian surface waters 2006–2008. Bull Environ Contam Toxicol 87(4):420–425PubMedCrossRefGoogle Scholar
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 PubMedCrossRefGoogle Scholar
  23. Teng Y, Luo Y, Ping L, Zou D, Li Z, Christie P (2010) Effects of soil amendment with different carbon sources and other factors on the remediation of an aged PAH-contaminated soil. Biodegradation 21(2):167–178. doi: 10.1007/s10532-009-9291-x PubMedCrossRefGoogle Scholar
  24. Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H (2000) Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manag Sci 56(5):455–462CrossRefGoogle Scholar
  25. Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20(7):1381–1389PubMedCrossRefGoogle Scholar
  26. Torstensson L (2001) Use of herbicides on railway tracks in Sweden. Pestic Outlook 12(1):16–21CrossRefGoogle Scholar
  27. Vroumsia T, Steiman R, SeigleMurandi F, BenoitGuyod JL, Khadrani A (1996) Biodegradation of three substituted phenylurea herbicides (chlorotoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere 33(10):2045–2056PubMedCrossRefGoogle Scholar
  28. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., San Diego, pp 315–322Google Scholar
  29. Wösten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9(2):85–88PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lea Ellegaard-Jensen
    • 1
    • 2
    Email author
  • Jens Aamand
    • 2
  • Birthe B. Kragelund
    • 3
  • Anders H. Johnsen
    • 4
  • Søren Rosendahl
    • 1
  1. 1.Department of BiologyCopenhagen UniversityCopenhagen ØDenmark
  2. 2.Department of GeochemistryGeological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  3. 3.Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagen NDenmark
  4. 4.Department of Clinical BiochemistryRigshospitaletCopenhagen ØDenmark

Personalised recommendations