, Volume 23, Issue 6, pp 851–863 | Cite as

DDT remediation in contaminated soils: a review of recent studies

  • Simi Sudharshan
  • Ravi Naidu
  • Megharaj Mallavarapu
  • Nanthi Bolan
Original Paper


Over the past few decades significant progress has been made in research on DDT degradation in the environment. This review is an update of some of the recent studies on the degradation and biodegradation pathways of DDT and its metabolites, particularly in soils. The latest reports on human toxicity shows that DDT intake is still occurring even in countries that banned its use decades ago. Ageing, sequestration and formation of toxic metabolites during the degradation processes pose environmental challenges and result in difficulties in bioremediation of DDT contaminated soils. Degradation enhancement strategies such as the addition of chelators, low molecular organic acids, co-solvent washing and the use of sodium and seaweeds as ameliorant have been studied to accelerate degradation. This review describes and discusses the recent challenges and degradation enhancement strategies for DDT degradation by potentially cost effective procedures based on bioremediation.


DDT Bioavailability Biodegradation 



This research was supported by the University of South Australia through a University President Scholarship (UPS) in collaboration with Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE).


  1. Ahuja R, Awasthi N, Manickam N, Kumar A (2001) Metabolism of 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene by Alcaligenes denitrificans. Biotechnol Lett 23:423–426CrossRefGoogle Scholar
  2. Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review. N Z J Agric Res 40:269–282CrossRefGoogle Scholar
  3. Alexander M, Guerin WF (1999) Biodegradation and bioremediation. Academic Press, San DiegoGoogle Scholar
  4. Andrea MM, Luchini LC, Mello MHSH, Tomita RY, Mesquita TB, Musumeci MR (1994) Dissipation and degradation of DDT, DDE and parathion in Brazilian soils. J Environ Sci Health 29:121–132CrossRefGoogle Scholar
  5. Aulenta F, Majone M, Tandoi V (2006) Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J Chem Technol Biotechnol 81:1463–1474CrossRefGoogle Scholar
  6. Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 38:49–56CrossRefGoogle Scholar
  7. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013CrossRefGoogle Scholar
  8. Bosma TNP, Middeldrop PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitations of biotransformation: quantifying bioavailability. Environ Sci Technol 31: 248–252 by Mucor ramosissimus. Int Biodeterior Biodegrad 63:123–129Google Scholar
  9. Bylaska EJ, Dixon DA, Felmy AR, Edoardo A, Windus TL, Zhan CG, Tratnyek PG (2004) The energetics of the hydrogenolysis, dehydrohalogenation, and hydrolysis of 4,4-dichloro-diphenyl-trichloroethane from initio electronic structure theory. J Phys Chem A 108:5883–5893CrossRefGoogle Scholar
  10. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368CrossRefGoogle Scholar
  11. Chung TV, Khue DN, Minh DB, Cheng F (2009) Use of fungal humus for 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) polluted soil treatment. Asian J Chemis 2:5967–5972Google Scholar
  12. Corona-Cruz A, Gold-Bouchot G, Gutierrez-Rojas M, Monroy-Hermosillo O, Favela E (1999) Anaerobic–aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bull Environ Contam Toxicol 63:219–225PubMedCrossRefGoogle Scholar
  13. DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen nov and a novel anaerobic dehalogenating sulfate-reducing bacterium. Arch Microbiol 154:23–30CrossRefGoogle Scholar
  14. Eganhouse RP, Pontolillo J (2007) Assessment of 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl) ethenyl] benzene (DDE) transformation rates on the Palos Verdes Shelf. Geological Survey, Menlo ParkGoogle Scholar
  15. Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterisation of bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184:281–289PubMedCrossRefGoogle Scholar
  16. Fisher BE (1999) Most unwanted persistent organic pollutants. Environ Health Perspect 107:18–23CrossRefGoogle Scholar
  17. Gao B, Liu WB, Jia LY, Xu L, Xie J (2011) Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. J Environ Sci Health B 46:257–263PubMedCrossRefGoogle Scholar
  18. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526CrossRefGoogle Scholar
  19. Gevao B, Jones KC, Haygarth PM, Jarvis SC (2002) Pesticides and persistent organic pollutants. Agriculture, hydrology and water quality, CABI Publishing, Wallingford, UKGoogle Scholar
  20. Häggblom MM, Bossert ID (2003) Halogenated organic compounds—a global perspective. Microbial processes and environmental applications. Kluwer, BostonGoogle Scholar
  21. Hay AG, Focht DD (1998) Cometabolism of 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64:2141–2146PubMedGoogle Scholar
  22. Hay AG, Focht DD (2000) Transformation of 1,1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microbiol Ecol 31:249–253PubMedCrossRefGoogle Scholar
  23. Huang HJ, Liu SM, Kuo CE (2001) Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment. J Environ Sci Health B 36:273–288PubMedCrossRefGoogle Scholar
  24. Jabbar MA, Shimakoshi H, Hisaeda Y (2007) Enhanced reactivity of hydrophobic vitamin B 12 towards the dechlorination of DDT in ionic liquid. Chem Commun 16:1653–1655CrossRefGoogle Scholar
  25. Jagnow G, Halder K (1972) Evolution of CO2 from soil incubated with dieldrin-14C. Soil Biol Biochem 4:43CrossRefGoogle Scholar
  26. Jota MAT, Hassett JP (1991) Effects of environmental variables on binding of a PCB congener by dissolved humic substances. Environ Sci Technol 10:483–491Google Scholar
  27. Juhasz AL, Megharaj M, Naidu R (2000) Bioavailability: the major challenge (constraint) to bioremediation of organically contaminated soils. Remediation engineering of contaminated soils. Marcel Dekker, New YorkGoogle Scholar
  28. Kamanavalli CM, Ninnekar HZ (2004) Biodegradation of DDT by a Pseudomonas sp. Curr Microbiol 48:10–13PubMedCrossRefGoogle Scholar
  29. Kantachote D, Naidu R, Williams B, McClure N, Megharaj M, Singleton I (2004a) Bioremediation of DDT-contaminated soil: enhancement by seaweed addition. J Chem Technol Biotechnol 79:632–638CrossRefGoogle Scholar
  30. Kantachote D, Singleton I, Naidu R, McClure N, Megharaj M (2004b) Sodium application enhances DDT transformation in a long-term contaminated soil. Water Air Soil Pollut 154:115–125CrossRefGoogle Scholar
  31. Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764CrossRefGoogle Scholar
  32. Korte F, Porter PE (1970) Evaluation: biotransformation by microorganisms. J Assoc Off Anal Chem 53:494–500Google Scholar
  33. Luo L, Zhang S, Shan XQ, Zhu YG (2006) Oxalate and root exudates enhance the desorption of p,p′-DDT from soils. Chemosphere 63:1273–1279PubMedCrossRefGoogle Scholar
  34. Macleod CJA, Morris AWJ, Semple KT (2001) The role of microorganism in ecological risk assessment of hydrophobic organic contaminants (HOCs) in soils. Adv Appl Microbiol 48:171–212PubMedCrossRefGoogle Scholar
  35. Matsumura F, Boush GM (1967) Dieldrin degradation by soil microorganisms. Science 156:959–961PubMedCrossRefGoogle Scholar
  36. Matsumura F, Boush GM (1968) Degradation of insecticides by a soil fungus Trichoderma viride. J Econ Entomol 61:610–612PubMedGoogle Scholar
  37. Megharaj M, Jovcic A, Boul HL, Thiele JH (1997) Recalcitrance of 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (DDE) to cometabolic degradation by pure cultures of aerobic and anaerobic bacteria. Arch Environ Contam Toxicol 33:141–146PubMedCrossRefGoogle Scholar
  38. Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42PubMedCrossRefGoogle Scholar
  39. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Mol Biol Rev 56:482–507Google Scholar
  40. Morrison DE, Robertson BK, Alexander M (2000) Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ Sci Technol 34:709–713CrossRefGoogle Scholar
  41. Mwangi K, Boga HI, Muigai AW, Kiiyukia C, Tsanuo MK (2010) Degradation of dichlorodiphenylchloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr J Microbiol Res 4:185–196Google Scholar
  42. Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol 60:51–55PubMedGoogle Scholar
  43. Nam K, Kim JY (2002) Persistence and bioavailability of hydrophobic organic compounds in the environment. Geosci J 6:13–21CrossRefGoogle Scholar
  44. Nam K, Kukor JJ (2003) Bioavailability of organohalides. Microbial processes and environmental applications. Kluwer, DodrechtGoogle Scholar
  45. Nies L, Vogel TM (1990) Effects of organic substrates on dechlorination of Aroclor in anaerobic sediments. Appl Environ Microbiol 56:2612–2617PubMedGoogle Scholar
  46. Niu J, Wang J, Cui D, Liu X, Guang H (2012) Study on the isolation, identification and degradation characterisation of a DDT-degrading bacteria. Adv Mater Res 518–523:2030–2033CrossRefGoogle Scholar
  47. Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin and DDT by soil microorganisms. Appl Environ Microbiol 19:879–881Google Scholar
  48. Providenti MA, Lee H, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol Biotechnol 12:379–395Google Scholar
  49. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010a) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64:397–402CrossRefGoogle Scholar
  50. Purnomo AS, Mori T, Kondo R (2010b) Involvement of Fenton reaction in DDT degradation by brown-rot fungi. Int Biodeterior Biodegrad 64:560–565CrossRefGoogle Scholar
  51. Purnomo AS, Mori T, Kamei I, Kondo R (2011) Basic studies and applications on bioremediation of DDT: a review. Int Biodeterior Biodegrad 65:921–930CrossRefGoogle Scholar
  52. Quensen JF III, Tiedje JM, Jain MK, Mueller SA (2001) Factors controlling the rate of DDE dechlorination to DDMU in Palos Verdes margin sediments under anaerobic conditions. Environ Sci Technol 35:286–291PubMedCrossRefGoogle Scholar
  53. Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments: a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112PubMedCrossRefGoogle Scholar
  54. Robertson BK, Alexander M (1998) Sequestration of DDT and dieldrin in soil: disappearance of acute toxicity but not the compounds. Environ Toxicol Chem 17:1034–1038CrossRefGoogle Scholar
  55. Samuel T, Pillai MK (1989) The effect of temperature and solar radiations on volatilisation, mineralisation and degradation of [14C]-DDT in soil. Environ Pollut 57:63–77PubMedCrossRefGoogle Scholar
  56. Satapanajaru T, Comfort SD, Shea PJ (2003) Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J Environ Qual 32:1726–1734PubMedCrossRefGoogle Scholar
  57. Satapanajaru T, Anurakpongsatorn P, Songsasen A, Boparai H, Park J (2006) Using low-cost iron by products from automotive manufacturing to remediate DDT. Water Air Soil Pollut 175:361–374CrossRefGoogle Scholar
  58. Schlebaum W, Badora A, Schraa G, van Reimsdijk WH (1998) Interaction between a hydrophobic organic chemical and natural organic matter: equilibrium and kinetic studies. Environ Sci Technol 32:2273–2277CrossRefGoogle Scholar
  59. Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818CrossRefGoogle Scholar
  60. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228–231CrossRefGoogle Scholar
  61. Senesi JF III, Mueller SA, Jain MK, Tiedje JM (1998) Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 280:722–724CrossRefGoogle Scholar
  62. Shukla KP, Singh NK, Sharma S (2010) Bioremediation: Developments, current practices and perspectives. Genet Eng Biotechnol J 3:1–20Google Scholar
  63. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73PubMedCrossRefGoogle Scholar
  64. Smith E, Smith J, Naidu R, Juhasz AL (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water Air Soil Pollut 151:71–86CrossRefGoogle Scholar
  65. Szewczyk R, Dlugonski J (2009) Pentachlorophenol and spent engine oil degradation by Mucor ramosissimus. Int Biodeterior Biodegrad 63:123–129CrossRefGoogle Scholar
  66. Thomas JE, Gohil H (2011) Microcosm studies on the degradation of o, p0- and p, p0-DDT, DDE, and DDD in a muck soil. World J Microbiol Biotechnol 27:619–625CrossRefGoogle Scholar
  67. Wang GL, Bi M, Liang JD, Li SP (2011) Pseudoxanthomonas jiangsuensis sp. nov., a DDT-degrading bacterium isolated from a long-term DDT-polluted soil. Curr Micrbiol 62:1760–1766CrossRefGoogle Scholar
  68. White JC, Mattina MJI, Lee WY, Eitzer BD, Iannucci-Berger W (2003) Role of organic acids in enhancing the desorption and uptake of weathered p,p′-DDE by Cucurbita pepo. Environ Pollut 124:71–80PubMedCrossRefGoogle Scholar
  69. Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15PubMedCrossRefGoogle Scholar
  70. Wilson SC, Naidu R (2008) Organic contaminant speciation and bioavailability in the terrestrial environment. Developments in soil science. Elsevier, LondonGoogle Scholar
  71. Xie H, Zhu L, Xu Q, Wang J, Liu W, Jiang J, Meng Y (2011) Isolation and degradation ability of the DDT-degrading bacterial strain KK. Environ Earth Sci 62:93–99CrossRefGoogle Scholar
  72. Xing B, Pignatello JJ (1997) Dual-model sorption of low-polarity compounds in glassy poly (Vinyl chloride) and soil organic matter. Environ Sci Technol 31:792–799CrossRefGoogle Scholar
  73. Yang Y, Ratte D, Smets BF, Pignatello JJ, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43:1013–1021PubMedCrossRefGoogle Scholar
  74. Yim YJ, Seo J, Kang SI, Ahn JH, Hur HG (2008) Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions. Arch Environ Contam Toxicol 54:406–411PubMedCrossRefGoogle Scholar
  75. You G, Sayles GD, Kupferle MJ, Kim IS, Bishop PL (1996) Anaerobic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential. Chemosphere 32:2269–2284CrossRefGoogle Scholar
  76. Zayed SMAD, Mostafa IY, El-Arab AE (1994) Chemical and biological release of 14C bound residues from soil treated with 14C-p,p′-DDT. J Environ Sci Health 29:169–175CrossRefGoogle Scholar
  77. Zhao Y, Yi X (2010) Effects of soil oxygen condition and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi. Int J Environ Res Public Health 7:1612–1621PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Simi Sudharshan
    • 1
    • 2
  • Ravi Naidu
    • 1
    • 2
  • Megharaj Mallavarapu
    • 1
    • 2
  • Nanthi Bolan
    • 1
    • 2
  1. 1.Centre for Environmental Risk Assessment and Remediation (CERAR)University of South AustraliaMawson LakesAustralia
  2. 2.Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)Mawson LakesAustralia

Personalised recommendations