, Volume 23, Issue 3, pp 387–397 | Cite as

Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides

  • Concepción Chino-Flores
  • Edgar Dantán-González
  • Alejandra Vázquez-Ramos
  • Raunel Tinoco-Valencia
  • Rafael Díaz-Méndez
  • Enrique Sánchez-Salinas
  • Ma. Luisa Castrejón-Godínez
  • Fernando Ramos-Quintana
  • Ma. Laura Ortiz-Hernández
Original Paper


Microbial enzymes that can hydrolyze organophosphorus compounds have been isolated, identified and characterized from different microbial species in order to use them in biodegradation of organophosphorus compounds. We isolated a bacterial strain Cons002 from an agricultural soil bacterial consortium, which can hydrolyze methyl-parathion (MP) and other organophosphate pesticides. HPLC analysis showed that strain Cons002 is capable of degrading pesticides MP, parathion and phorate. Pulsed-field gel electrophoresis and 16S rRNA amplification were performed for strain characterization and identification, respectively, showing that the strain Cons002 is related to the genus Enterobacter sp. which has a single chromosome of 4.6 Mb and has no plasmids. Genomic library was constructed from DNA of Enterobacter sp. Cons002. A gene called opdE (Organophosphate Degradation from E nterobacter) consists of 753 bp and encodes a protein of 25 kDa, which was isolated using activity methods. This gene opdE had no similarity to any genes reported to degrade organophosphates. When kanamycin-resistance cassette was placed in the gene opdE, hydrolase activity was suppressed and Enterobacter sp. Cons002 had no growth with MP as a nutrients source.


Methyl-parathion Organophosphorus pesticides Enterobacter sp. Cons002 opdE Gene Degradation 



We thank Blanca I. García-Gomez for generous assistance with sequencing. The research work of our groups was supported in part by CONACyT 93760 and grant CONSOLIDACIÓN-18-08.


  1. Adebusoyea SA, Picardalb FW, Iloria MO, Amunda OO, Fuquac C, Greindlec N (2007) Aerobic degradation of di- and trichlorobenzenes by two bacteria isolated from polluted tropical soils. Chemosphere 66:1939–1946. doi: 10.1016/j.chemosphere.2006.07.074 CrossRefGoogle Scholar
  2. Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45:13675–13686. doi: 10.1021/bi061268r CrossRefGoogle Scholar
  3. Alexeyev MF, Shokolenko IN, Croughan TP (1995) Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67. doi: 10.1016/0378-1119(95)00108-I PubMedCrossRefGoogle Scholar
  4. Brown K (1980) The phosphotriesterase of Flavobacterium sp. Soil Biol Biochem 12:105–112. doi: 10.1016/0038.0717(80)90044-9 CrossRefGoogle Scholar
  5. Chen W, Richins R, Mulchandani P, Kaneva I, Mulchchandani A (2000) Biodegradation of organophosphorus nerve agents by surface expressed organophosphorus hydrolase. In: Zwanenburg B, Mikalajezyk M, Kielbasiski P (eds) Enzymes in action green solution for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 211–221Google Scholar
  6. Cui Z, Li S, Fu G (2001) Isolation of methyl-parathion-degrading strain M6 and cloning of the methyl-parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925. doi: 10.1128/AEM.67.10.4922-4925.2001 CrossRefGoogle Scholar
  7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645. doi: 10.1073/pnas.120163297 PubMedCrossRefGoogle Scholar
  8. DePristo MA (2007) The subtle benefits of being promiscuous: adaptive evolution potentiated by enzyme promiscuity. HFSP J 1:94–98. doi: 10.2976/1.2754665 PubMedCrossRefGoogle Scholar
  9. Dresler K, Van DHJ, Müller RJ, Deckwer WD (2006) Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli. Bioprocess Biosyst Eng 29:169–183. doi: 10.1007/s00449-006-0069-9 PubMedCrossRefGoogle Scholar
  10. Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S, Rochu D, Lecomte D, Rossi M, Masson P, Manco G, Chabriere E (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 5:1017–1028. doi: 10.1016/j.jmb.2008.04.022 CrossRefGoogle Scholar
  11. Ghanem E, Raushel FM (2005) Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol Appl Pharmacol 207:459–470. doi: 10.1016/j.taap.2005.02.025 PubMedCrossRefGoogle Scholar
  12. Ghanem E, Li Y, Xu C, Raushel FM (2007) Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX. Biochemistry 46:9032–9040. doi: 10.1021/bi700561k PubMedCrossRefGoogle Scholar
  13. Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJE (2007) Convergent evolution of enzyme active sites is not a rare phenomenon. J Mol Biol 372:817–845. doi: 10.1234/12345678 PubMedCrossRefGoogle Scholar
  14. Horne I, Harcourt RL, Sutherland TD, Russell RJ, Oakeshott JG (2002) Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol Lett 206:51–55. doi: 10.1111/j.1574-6968.2002.tb10985.x PubMedCrossRefGoogle Scholar
  15. Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol. 2(7): e206. doi: 10.1371/journal.pbio.0020206
  16. Kaoa CM, Chenb CS, Tsab FY, Yangc KH, Chiend CC, Liangb SH, Yangb CA, Chenb SC (2010) Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J Hazard Mater 178:409–416. doi: 10.1016/j.jhazmat.2010.01.096 CrossRefGoogle Scholar
  17. Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:11.1–11.35. doi: 10.1146/annurev-biochem-030409-143718 Google Scholar
  18. Kim KD, Ahn JH, Kim T, Park SC, Seong CN, Song HG, Ka JO (2009) Genetic and phenotypic diversity of fenitrothion-degrading bacteria isolated from soils. J Microbiol Biotechnol 19:113–120. doi: 10.4014/jmb.0808.467 PubMedCrossRefGoogle Scholar
  19. Lopez I, Ruíz LF, Cocolin L, Orr E, Phister T, Marshall M, VanderGheynst J, Mills DA (2003) Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis. Appl Environ Microbiol 69:6801–6807. doi: 10.1128/AEM.69.11.6801-6807.2003 PubMedCrossRefGoogle Scholar
  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  21. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. doi: 10.1093/nar/16.3.1215 PubMedCrossRefGoogle Scholar
  22. O’Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6(4):R91–R105. doi: 10.1016/S1074-5521(99)80033-7 PubMedCrossRefGoogle Scholar
  23. Ortiz-Hernández ML, Quintero-Ramírez R, Nava-Ocampo AA, Bello-Ramírez AM (2003) Study of the mechanism of Flavobacterium sp for hydrolyzing organophosphate pesticides. Fundam Clin Pharmacol 17:717–722. doi: 10.1046/j.1472-8206.2003.00202.x PubMedCrossRefGoogle Scholar
  24. Porzio E, Merone L, Mandricha L, Rossia M, Manco G (2007) A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochemie 89:625–636. doi: 10.1016/j.biochi.2007.01.007 CrossRefGoogle Scholar
  25. Pratt RF, McLeish MJ (2010) Structural relationship between the active sites of β-lactam-recognizing and amidase signature enzymes: convergent evolution? Biochemistry 49(45):9688–9697. doi: 10.1021/bi1012222 PubMedCrossRefGoogle Scholar
  26. Robertson BK, Jjemba PK (2005) Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270. doi: 10.1016/j.chemosphere.2004.08.080 PubMedCrossRefGoogle Scholar
  27. Rong L, Guo X, Chen K, Zhu J, Li S, Jiang J (2009) Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway. J Microbiol Biotechnol 19:1439–1446. doi: 10.4014/jmb.0811.0626 PubMedGoogle Scholar
  28. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  29. Scanlan TS, Reid RC (1995) Evolution in action. Chem Biol 2:71–75. doi: 10.1016/1074-5521(95)90278-3 PubMedCrossRefGoogle Scholar
  30. Seibert CM, Raushel FM (2005) Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44:6383–6391. doi: 10.1021/bi047326v PubMedCrossRefGoogle Scholar
  31. Seo JS, Keum YS, Harada RM, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389. doi: 10.1021/jf0637630 PubMedCrossRefGoogle Scholar
  32. Sethunathan N, Yoshida T (1973) A Flavobacterium sp that degrades diazinon and parathion. Can J Microbiol 19:873–875. doi: 10.1139/m73-138 PubMedCrossRefGoogle Scholar
  33. Shen YJ, Lu P, Mei H, Yu HJ, Hong Q, Li SP (2010) Isolation of a methyl-parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792. doi: 10.1007/s10532-010-9343-2 PubMedCrossRefGoogle Scholar
  34. Singh B (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164. doi: 10.1038/nrmicro2050 PubMedCrossRefGoogle Scholar
  35. Singh B, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. doi: 10.1111/j.1574-6976.2006.00018.x PubMedCrossRefGoogle Scholar
  36. Singh B, Walker A, Morgan J, Wright D (2004) Biodegradation of chlorpyrifos by Enterobacter Strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863. doi: 10.1128/AEM.70.8.4855-4863 PubMedCrossRefGoogle Scholar
  37. Smith CL, Cantor CR (1987) Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol 155:449–467. doi: 10.1016/0076-6879(87)55050 PubMedCrossRefGoogle Scholar
  38. Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128(1–3):215–228. doi: 10.1016/S0378-4274(01)00543-4 PubMedCrossRefGoogle Scholar
  39. Tago K, Yonezawab S, Ohkouchib T, Hashimotoc M, Hayatsub M (2006) Purification and characterization of fenitrothion hydrolase from Burkholderia sp. NF100. J Biosci Bioeng 101:80–82. doi: 10.1263/jbb.101.80 PubMedCrossRefGoogle Scholar
  40. Theriot CM, Grunden AM (2010) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43. doi: 10.1007/s00253-010-2807-9 PubMedCrossRefGoogle Scholar
  41. Thoden JB, Ringia EAT, Garrett JB, Gerlt JA, Holden HM, Rayment I (2004) Evolution of enzymatic activity in the enolase superfamily: structural studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis. Biochem 43:5716–5727. doi: 10.1021/bi0497897 CrossRefGoogle Scholar
  42. Van DJS, Pletschke B (2010) Review of the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307. doi: 10.1016/j.chemosphere.2010.10.033 Google Scholar
  43. Wang L, Wen Y, Guo X, Wang G, Li S, Jiang J (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation 21:785–792. doi: 10.1007/s10532-009-9320-9 CrossRefGoogle Scholar
  44. Yáñez-Ocampo G, Sanchez-Salinas E, Jimenez-Tobon GA, Penninckx M, Ortiz-Hernández ML (2009) Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle. J Hazard Mater 168:1554–1561. doi: 10.1016/j.hazmat.2009.03.047 PubMedCrossRefGoogle Scholar
  45. Zhang R, Cui Z, Zhang X, Jiang J, Gu JD, Li S (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl-parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 5:465–472. doi: 10.1007/s10532-005-9018-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Concepción Chino-Flores
    • 1
  • Edgar Dantán-González
    • 1
  • Alejandra Vázquez-Ramos
    • 2
  • Raunel Tinoco-Valencia
    • 2
  • Rafael Díaz-Méndez
    • 3
  • Enrique Sánchez-Salinas
    • 1
  • Ma. Luisa Castrejón-Godínez
    • 1
  • Fernando Ramos-Quintana
    • 4
  • Ma. Laura Ortiz-Hernández
    • 1
  1. 1.Laboratorio de Investigaciones Ambientales, Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado MorelosCuernavacaMexico
  2. 2.Instituto de BiotecnologíaUNAMCuernavacaMexico
  3. 3.Centro de Ciencias GenómicasUNAMCuernavacaMexico
  4. 4.Instituto Tecnológico de Estudios Superiores de MonterreyCuernavacaMexico

Personalised recommendations