Biodegradation

, Volume 22, Issue 6, pp 1075–1086

Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes

  • Hiroto Suhara
  • Ai Adachi
  • Ichiro Kamei
  • Nitaro Maekawa
Original Paper

Abstract

One hundred and two basidiomycete strains (93 species in 41 genera) that prefer a soil environment were examined for screening of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation. Three strains within two litter-decomposing genera, Agrocybe and Marasmiellus, were selected for their DDT biotransformation capacity. Eight metabolites; 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), two monohydroxy-DDTs, monohydroxy-DDD, 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol, putative 2,2-bis(4-chlorophenyl)ethanol and two unidentified compounds were detected from the culture with Marasmiellus sp. TUFC10101. A P450 inhibitor, 1-ABT, inhibited the formation of monohydroxy-DDTs and monohydroxy-DDD from DDT and DDD, respectively. These results indicated that oxidative pathway which was catalyzed by P450 monooxygenase exist beside reductive dechlorination of DDT. Monohydroxylation of the aromatic rings of DDT (and DDD) by fungal P450 is reported here for the first time.

Keywords

Bioremediation Cytochrome P450 monooxygenase Insecticide DDT Persistent organic pollutants (POPs) Marasmiellus 

References

  1. Aislable JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues: a review. NZ J Agric Res 40:269–282CrossRefGoogle Scholar
  2. Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst Biodivers 3:113–157CrossRefGoogle Scholar
  3. Bumpus JA, Aust SD (1987) Biodegradation of DDT by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2007PubMedGoogle Scholar
  4. Bumpus JA, Powers RH, Sun T (1993) Biodegradation of DDE (1,1-dichloro-2,2-bis (4-chlorophenyl)ethane) by Phanerochaete chrysosporium. Chemosphere 19:1387–1398Google Scholar
  5. Fernando T, Aust SD, Bumpus JA (1989) Effects of culture parameters on DDT [1,1,1-trichloro-2,2-bis (4-chlorophenyl)ethane] biodegradation by Phanerochaete chrysosporium. Chemosphere 19:1387–1398CrossRefGoogle Scholar
  6. Foght J, April T, Bigga K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediat J 53:225–246CrossRefGoogle Scholar
  7. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetous—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  8. Hay AG, Focht DD (1998) Cometabolism of 1,1-dichloro-2,2-bis (4-chlorophenyl)ethane by Pseudomonas acidovorans M3GY grown on biphenyl. Appl Environ Microbiol 64:2141–2146PubMedGoogle Scholar
  9. Hay AG, Focht DD (2000) Transformation of 1,1-dichrolo-2,2-(4-chrolophenyl)ethane (DDD) by Ralstonia eutropha strain A5. FEMS Microb Ecol 31:249–253CrossRefGoogle Scholar
  10. Huang Y, Zhao X, Luan S (2007) Uptake and biodegradation of DDT by 4 Ectomycorrhizal fungi. Sci Total Environ 385:235–241PubMedCrossRefGoogle Scholar
  11. Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221PubMedCrossRefGoogle Scholar
  12. Kamanavalli CM, Ninnekar HZ (2004) Biodegradation of DDT by a Pseudomonas species. Curr Microbiol 48:10–13PubMedCrossRefGoogle Scholar
  13. Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566PubMedCrossRefGoogle Scholar
  14. Lang E, Eller G, Zadrazil F (1997) Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol 34:1–10PubMedCrossRefGoogle Scholar
  15. Macalady DL, Tratnyek PG, Grundl TJ (1986) Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: a critical review. J Contam Hydro 1:1–28CrossRefGoogle Scholar
  16. Maekawa N, Suhara H, Kinjo K, Kondo R, Hoshi Y (2005) Haloaleurodiscus mangrovei gen. sp. nov. (Basidiomycotina) from mangrove forests in Japan. Mycol Res 109:825–832PubMedCrossRefGoogle Scholar
  17. Martens R, Zadrazil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43:97–103CrossRefGoogle Scholar
  18. Menzer RE, Nelson JO (1991) Water and soil pollutants. In: Amdur M, Doull J, Klaassen CD (eds) Casarett and Doull’s toxicology: the basic science of poisons, 4th edn. Pergamon Press, New York, pp 872–902Google Scholar
  19. Moncalvo JM, Lutzoni FM, Rehner SA, Johonson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305CrossRefGoogle Scholar
  20. Mori T, Kondo R (2002) Oxidation of chlorinated dibenzo-p-dioxin and dibenzofran by white-rot fungus Phlebia lindtneri. FEMS Microbiol Lett 216:223–227PubMedCrossRefGoogle Scholar
  21. Nadeau LJ, Menn FM, Breen A, Sayler GS (1994) Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligens eutrophus A5. Appl Environ Microbiol 60:51–55Google Scholar
  22. Pfaender FK, Alexander M (1972) Extensive microbial degradation of DDT to DDD by Proteus vulgaris, a bacterium isolated from the intestinal flora of a mouse. Nature 205:621–622Google Scholar
  23. Purunomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl)ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621CrossRefGoogle Scholar
  24. Rochkind ML, Blackburn JW, Sayler GS (1986) Microbial decomposition of chlorinated aromatic compounds. EPA/600/2-86/090, U.S. Environmental Protection Agency, CincinnatiGoogle Scholar
  25. Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269:1851–1854PubMedCrossRefGoogle Scholar
  26. Subba-Rao RV, Alexander M (1977) Products formed from analogues of DDT metabolites by Pseudomonas putida. Appl Environ Microbiol 33:101–108PubMedGoogle Scholar
  27. Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110:125–128CrossRefGoogle Scholar
  28. Wedemeyer G (1996) Dechlorination of DDT by Aerobacter aerognes. Science 152:647–652CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hiroto Suhara
    • 1
  • Ai Adachi
    • 1
  • Ichiro Kamei
    • 2
  • Nitaro Maekawa
    • 1
  1. 1.Faculty of AgricultureTottori UniversityTottoriJapan
  2. 2.Faculty of AgricultureMiyazaki UniversityMiyazakiJapan

Personalised recommendations