Advertisement

Biodegradation

, Volume 22, Issue 5, pp 1017–1027 | Cite as

Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin

  • Y. S. YangEmail author
  • J. T. Zhou
  • H. Lu
  • Y. L. Yuan
  • L. H. Zhao
Original Paper

Abstract

A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l−1) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium l-tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l−1) and laccase (3.5 U l−1)activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively.

Keywords

Alkali lignin Biodegradation Aspergillus sp. strain F-3 GC-MS analysis 

Notes

Acknowledgments

This work was supported by National Key Scientific and Technology Project for Water Pollution Treatment (2008 ZX07208-004-2); Projects (IRT0813) supported by Program for Changjiang Scholars and Innovative Research Team in University.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolourization of Solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeterior Biodegrad 61:189–193CrossRefGoogle Scholar
  3. Baborová P, Moder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157:248–253PubMedCrossRefGoogle Scholar
  4. Baldrian P, Valaskova V, Meerhautova V, Gabriel J (2005) Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese lead and zinc. Res Microbiol 156:670–676PubMedCrossRefGoogle Scholar
  5. Barnett HL, Hunter B (1972) Illustrated genera of imperfect fungi, 3rd edn. Burgess Publishing Company, MinneapolisGoogle Scholar
  6. Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng 75:313–321PubMedCrossRefGoogle Scholar
  7. CPPA (1974) Technical section standard method H5P. Canadian Pulp and Paper Association, MontrealGoogle Scholar
  8. Crawford DL, Sutherland JB, Pommeto AL III, Miller JM (1982) Production of an aromatic aldehyde oxidase by Streptomyces viridosporus. Arch Microbiol 131:351–355CrossRefGoogle Scholar
  9. Emtiazi G, Nahvi I, Salehbaig M (1999) Production of cellulose (exoglucanse) by fungi in different media. Res Bull Isfahan Univ 1:15–28Google Scholar
  10. Emtiazi G, Naghavi N, Bordbar A (2001) Biodegradation of lignocellulosic waste by Aspergillus terreus. Biodegradation 12:259–263PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Glenn JK, Gold MH (1985) Purification and characterisation of an extracellular Mn(II)-dependent peroxidase from the lignin degrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341PubMedCrossRefGoogle Scholar
  13. Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers. Lignin, humic substances, and coal, vol 1. Wiley-VCH, Weinheim, pp 129–180Google Scholar
  14. Hermann TE, Kurtz MB, Champe SP (1983) Laccase localized in hülle cells and cleistothecial primordia of Aspergillus nidulans. J Bacteriol 154(2):955–964PubMedGoogle Scholar
  15. Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926PubMedCrossRefGoogle Scholar
  16. Janshekar H, Brown C, Fiechter A (1981) Determination of biodegraded lignins by ultraviolet spectrophotometry. Anal Chim Acta 130:81–91CrossRefGoogle Scholar
  17. Janshekar H, Haltmeier T, Brown C (1982) Fungal degradation of pine and straw alkali lignins. Eur J Appl Microbiol Biotechnol 14:174–181CrossRefGoogle Scholar
  18. Jouni J, Jukka P, Mirjasalkinoja S (1987) Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds. Appl Environ Microbiol 53(11):2642–2649Google Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  20. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporiurn. Arch Microbiol 117:277–285CrossRefGoogle Scholar
  21. Libra JA, Borchert M, Banit S (2003) Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. Biotechnol Bioeng 82(6):736–744PubMedCrossRefGoogle Scholar
  22. Luengo JM, Dominguez A, Cantroal JM, Martin JF (1986) Formation of bulges associated with penicillin production in high-producing stains of Penicillium chrysogenum. Curr Microbiol 13:203–207CrossRefGoogle Scholar
  23. Lundquist K, Kirk TK, Connors WJ (1977) Fungal degradation of kraft lignin and lignin sulfonates prepared from synthetic 14C lignin. Arch Microbiol 112:291–296CrossRefGoogle Scholar
  24. Milstein O, Vered Y, Gressel J, Flowers HM (1981) Biodegradation of wheat straw lignocarbohydrate complexes (LCC) II. Fungal growth on aqueous hydrolysate liquors and particulate residues of wheat straw. Eur J Appl Microbiol Biotechnol 13:117–127CrossRefGoogle Scholar
  25. Milstein OA, Haars A, Sharma A, Vered Y, Shragina L, Trojanowski J, Flowers HM, Gressel J, Hcittermann A (1984) Lignin degrading ability of selected Aspergillus spp. Appl Biochem Biotechnol 9:393–394CrossRefGoogle Scholar
  26. Murphy JA, Campbell LL, Pappelis AJ (1974) Morphological observations of Diplodia maydis on synthetic and natural substrates as revealed by scanning electron microscopy. Appl Microbiol 27(1):232–250PubMedGoogle Scholar
  27. Niku-Paavola ML, Raaska L, Itävaara M (1990) Detection of white rot fungi by a non-toxic stain. Mycol Res 94:27–31CrossRefGoogle Scholar
  28. Nirmalendu D, Tapas Kumar C, Mina M (1999) Role of potato extract in extracellular laccase production of Pleurotus florida. J Basic Microbiol 39(5–6):299–303Google Scholar
  29. Palma C, Moreira MT, Mielgo I, Feijoo G, Lema JM (1999) Use of a fungal bioreactor as a pretreatment or post-treatment step for continuous decolorization of dyes. Water Sci Technol 40:131–136Google Scholar
  30. Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbial Biotechnol 57:20–33CrossRefGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Sanromán A, Feijoo G, Lema JM (1996)Immobilization of Aspergillus niger and Phanerochaete chrysosporium on polyurethane foam. Prog Biotechnol 11:132–135 (Immobilized cells—basics and applications, Proceedings of an international symposium organized under auspices of The Working Party on Applied Biocatalysis of the European Federation of Biotechnology Noordwijkerhout)Google Scholar
  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  35. Tien M, Kirk TK (1983) Lignin-degrading enzymes from himenomycete Phanerochaete chrysosporium Burds. Science 221:661–663PubMedCrossRefGoogle Scholar
  36. Tien M, Kirk TK (1984) Lignin degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2 requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284PubMedCrossRefGoogle Scholar
  37. Zeng GM, Yu HY, Huang HL, Huang DL, Chen YN, Huang GH, Li JB (2006) Laccase activities of a soil fungus Penicilliums implicissimum in relation to lignin degradation. World J Microbiol Biotechnol 22(4):317–324CrossRefGoogle Scholar
  38. Zhang FM, Knapp JS, Kelvin NT (1999) Development of bioreactor systems for decolorization of Orange II using white rot fungus. Enzym Microb Technol 24:48–53CrossRefGoogle Scholar
  39. Zhao LH, Zhou JT, Lv H, Zheng CL, Yang YS, Sun HJ, Zhang XH (2008) Decolorization of cotton pulp black liquor by Pleurotus ostreatus in a bubble-column reactor. Bull Environ Contam Toxicol 80:44–48PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Y. S. Yang
    • 1
    • 2
    Email author
  • J. T. Zhou
    • 1
  • H. Lu
    • 1
  • Y. L. Yuan
    • 2
  • L. H. Zhao
    • 1
  1. 1.School of Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.School of Environmental and Chemical EngineeringDalian UniversityDalianChina

Personalised recommendations