Biodegradation

, Volume 22, Issue 3, pp 637–650 | Cite as

Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil

  • Sabir Hussain
  • Marion Devers-Lamrani
  • Najoi El Azhari
  • Fabrice Martin-Laurent
Original Paper

Abstract

The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.

Keywords

Biodegradation Isoproturon Phenylurea Catechol dioxygenase pH 

References

  1. Aislabie J, Lloydjones G (1995) A review of bacterial-degradation of pesticides. Aust J Soil Res 33(6):925–942CrossRefGoogle Scholar
  2. Alva VA, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37(19):4397–4402. doi:10.1021/es0341844 PubMedCrossRefGoogle Scholar
  3. Andrea MM, Peres TB, Luchini LC, Pettinelli A (2000) Impact of long-term pesticide applications on some soil biological parameters. J Environ Sci Health Part B: Pestic Food Contam Agric Wastes 35(3):297–307Google Scholar
  4. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812. doi:10.1016/j.envpol.2009.04.019 PubMedCrossRefGoogle Scholar
  5. Behera BC, Bhunya SP (1990) Genotoxic effect of isoproturon (herbicide) as revealed by three mammalian in vivo mutagenic bioassays. Indian J Exp Biol 28(9):862–867PubMedGoogle Scholar
  6. Bending GD, Lincoln SD, Sorensen SR, Morgan JAW, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. And soil pH. Appl Environ Microbiol 69(2):827–834PubMedCrossRefGoogle Scholar
  7. Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139(2):279–287PubMedCrossRefGoogle Scholar
  8. Breugelmans P, D’Huys PJ, De Mot R, Springael D (2007) Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils. FEMS Microbiol Ecol 62(3):374–385. doi:10.1111/j.1574-6941.2007.00391.x PubMedCrossRefGoogle Scholar
  9. Briceno G, Palma G, Duran N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Environ Sci Technol 37(3):233–271. doi:10.1080/10643380600987406 CrossRefGoogle Scholar
  10. Castillo MD, von Wiren-Lehr S, Scheunert I, Torstensson L (2001) Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium. Biol Fert Soils 33(6):521–528CrossRefGoogle Scholar
  11. Cheneby D, Perrez S, Devroe C, Hallet S, Couton Y, Bizouard F, Iuretig G, Germon JC, Philippot L (2004) Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities. Can J Microbiol 50(7):469–474. doi:10.1139/w04-037 PubMedCrossRefGoogle Scholar
  12. Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 56(1):3–15. doi:10.1016/j.mimet.2003.08.015 PubMedCrossRefGoogle Scholar
  13. El-Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16 s rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65(3):982–988PubMedGoogle Scholar
  14. El-Sebai T, Lagacherie B, Soulas G, Martin-Laurent F (2004) Isolation and characterisation of an isoproturon-mineralising Methylopila sp. TES from french agricultural soil. FEMS Microbiol Lett 239(1):103–110PubMedCrossRefGoogle Scholar
  15. El-Sebai T, Lagacherie B, Cooper JF, Soulas G, Martin-Laurent F (2005) Enhanced isoproturon mineralisation in a clay silt loam agricultural soil. Agron Sustain Dev 25(2):271–277CrossRefGoogle Scholar
  16. El-Sebai T, Lagacherie B, Soulas G, Martin-Laurent F (2007) Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters. Environ Pollut 145(3):680–690PubMedCrossRefGoogle Scholar
  17. Field JA, Reed RL, Sawyer TE, Martinez M (1997) Diuron and its metabolites in surface water and ground water by solid phase extraction and in-vial elution. J Agric Food Chem 45(10):3897–3902CrossRefGoogle Scholar
  18. Fournier JC, Soulas G, Catroux G (1975) Degradation microbienne de l’isoproturon dans des modeles de laboratoire. Chemosphere 4(4):207–214CrossRefGoogle Scholar
  19. Fredrickson JK, Balkwill DL, Romine MF, Shi T (1999) Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp. J Ind Microbiol Biotechnol 23(4–5):273–283PubMedCrossRefGoogle Scholar
  20. Gaillardon P, Sabar M (1994) Changes in the concentrations of isoproturon and its degradation products in soil and soil solution during incubation at two temperatures. Weed Res 34(4):243–250CrossRefGoogle Scholar
  21. Gurtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16s–23s rDNA spacer region. Microbiology–UK 142:3–16Google Scholar
  22. Hoshiya T, Hasegawa R, Hakoi K, Cui L, Ogiso T, Cabral R, Ito N (1993) Enhancement by non-mutagenic pesticides of GST-P positive hepatic foci development initiated with diethylnitrosamine in the rat. Cancer Lett 72(1–2):59–64PubMedCrossRefGoogle Scholar
  23. Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32(5):615–625CrossRefGoogle Scholar
  24. Hussain S, Sorensen SR, Devers-Lamrani M, El-Sebai T, Martin-Laurent F (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere 77(8):1052–1059. doi:10.1016/j.chemosphere.2009.09.020 PubMedCrossRefGoogle Scholar
  25. Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38(13):3041–3050PubMedCrossRefGoogle Scholar
  26. Mansour M, Feicht EA, Behechti A, Schramm KW, Kettrup A (1999) Determination photostability of selected agrochemicals in water and soil. Chemosphere 39(4):575–585PubMedCrossRefGoogle Scholar
  27. Muller K, Bach M, Hartmann H, Spiteller M, Frede HG (2002) Point- and nonpoint-source pesticide contamination in the Zwester Ohm catchment, Germany. J Environ Qual 31(1):309–318PubMedCrossRefGoogle Scholar
  28. Nayak AS, Veeranagouda Y, Lee K, Karegoudar TB (2009) Metabolism of acenaphthylene via 1, 2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK. Biodegradation 20(6):837–843. doi:10.1007/s10532-009-9271-1 PubMedCrossRefGoogle Scholar
  29. Nye TMW, Liò P, Gilks WR (2005) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22(1):117–119PubMedCrossRefGoogle Scholar
  30. Penning H, Sorensen SR, Meyer AH, Aamand J, Elsner M (2010) C, N, and H isotope fractionation of the herbicide isoproturon reflects different microbial transformation pathways. Environ Sci Technol 44(7):2372–2378. doi:10.1021/es9031858 PubMedCrossRefGoogle Scholar
  31. Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369PubMedCrossRefGoogle Scholar
  32. Pieuchot M, PerrinGanier C, Portal JM, Schiavon M (1996) Study on the mineralization and degradation of isoproturon in three soils. Chemosphere 33(3):467–478CrossRefGoogle Scholar
  33. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596. doi:10.1128/aem.02775-08 PubMedCrossRefGoogle Scholar
  34. Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new gram-negative and gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2–3):211–222PubMedGoogle Scholar
  35. Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microbiol 39(3):604–610PubMedGoogle Scholar
  36. Scassellati-Sforzolini G, Pasquini R, Moretti M, Villarini M, Fatigoni C, Dolara P, Monarca S, Caderni G, Kuchenmeister F, Schmezer P, PoolZobel BL (1997) In vivo studies on genotoxicity of pure and commercial linuron. Mutat Res Genet Toxicol Environ Mutagen 390(3):207–221CrossRefGoogle Scholar
  37. Sorensen SR, Aamand J (2001) Biodegradation of the phenylurea herbicide isoproturon and its metabolites in agricultural soils. Biodegradation 12(1):69–77PubMedCrossRefGoogle Scholar
  38. Sorensen SR, Ronen Z, Aamand J (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67(12):5403–5409PubMedCrossRefGoogle Scholar
  39. Sorensen SR, Ronen Z, Aamand J (2002) Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp strain SRS2. Appl Environ Microbiol 68(7):3478–3485PubMedCrossRefGoogle Scholar
  40. Sorensen SR, Bending GD, Jacobsen CS, Walker A, Aamand J (2003) Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol Ecol 45(1):1–11. doi:10.1016/s0168-6496(03)00127-2 PubMedCrossRefGoogle Scholar
  41. Sorensen SR, Simonsen A, Aamand J (2009) Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp strain. FEMS Microbiol Lett 292(2):291–296. doi:10.1111/j.1574-6968.2009.01501.x PubMedCrossRefGoogle Scholar
  42. Soulas G (1993) Evidence for the existence of different physiological groups in the microbial community responsible for 2, 4-D mineralization in soil. Soil Biol Biochem 25(4):443–449CrossRefGoogle Scholar
  43. Spliid NH, Koppen B (1998) Occurrence of pesticides in Danish shallow ground water. Chemosphere 37(7):1307–1316PubMedCrossRefGoogle Scholar
  44. Stangroom SJ, Collins CD, Lester JN (1998) Sources of organic micropollutants to lowland rivers. Environ Technol 19(7):643–666CrossRefGoogle Scholar
  45. Sun CQ, O’Connor CJ, Turner SJ, Lewis GD, Stanley RA, Roberton AM (1998) The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: implications for neonates fed on suckled milk. Chem-Biol Interact 113(2):117–131PubMedCrossRefGoogle Scholar
  46. Sun JQ, Huang X, Chen QL, Liang B, Qiu JG, Ali SW, Li SP (2009) Isolation and characterization of three Sphingobium sp strains capable of degrading isoproturon and cloning of the catechol 1, 2-dioxygenase gene from these strains. World J Microbiol Biotechnol 25(2):259–268. doi:10.1007/s11274-008-9888-y CrossRefGoogle Scholar
  47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882CrossRefGoogle Scholar
  48. Thurman EM, Bastian KC, Mollhagen T (2000) Occurrence of cotton herbicides and insecticides in playa lakes of the high plains of West Texas. Sci Total Environ 248(2–3):189–200PubMedCrossRefGoogle Scholar
  49. Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20(7):1381–1389PubMedCrossRefGoogle Scholar
  50. Tixier C, Sancelme M, Ait-Aissa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp N2: Structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46(4):519–526PubMedCrossRefGoogle Scholar
  51. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001) Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67(5):2270–2275PubMedCrossRefGoogle Scholar
  52. Vallotton N, Eggen RIL, Chevre N (2009) Effect of sequential isoproturon pulse exposure on Scenedesmus vacuolatus. Arch Environ Contam Toxicol 56(3):442–449. doi:10.1007/s00244-008-9200-z PubMedCrossRefGoogle Scholar
  53. Vieuble-Gonod L, Benoit P, Cohen N, Houot S (2009) Spatial and temporal heterogeneity of soil microorganisms and isoproturon degrading activity in a tilled soil amended with urban waste composts. Soil Biol Biochem 41(12):2558–2567. doi:10.1016/j.soilbio.2009.09.017 CrossRefGoogle Scholar
  54. Vroumsia T, Steiman R, SeigleMurandi F, BenoitGuyod JL, Khadrani A (1996) Biodegradation of three substituted phenylurea herbicides (chlorotoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere 33(10):2045–2056PubMedCrossRefGoogle Scholar
  55. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7(3):301–306PubMedCrossRefGoogle Scholar
  56. Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environ Pollut 152(3):576–584. doi:10.1016/j.envpol.2007.07.003 PubMedCrossRefGoogle Scholar
  57. Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K (1990) Modeling of the bacterial-growth curve. Appl Environ Microbiol 56(6):1875–1881PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sabir Hussain
    • 1
  • Marion Devers-Lamrani
    • 1
  • Najoi El Azhari
    • 2
  • Fabrice Martin-Laurent
    • 1
  1. 1.UMR Microbiologie du Sol et de l’EnvironmentINRA-Université de BourgogneDijon CedexFrance
  2. 2.Welience Agro-EnvironnementDijon CedexFrance

Personalised recommendations