Biodegradation

, Volume 22, Issue 4, pp 773–795 | Cite as

Molecular assessment of microbiota structure and dynamics along mixed olive oil and winery wastewaters biotreatment

  • Ana Eusébio
  • Marta Tacão
  • Sandra Chaves
  • Rogério Tenreiro
  • Elsa Almeida-Vara
Original Paper

Abstract

The major parcel of the degradation occurring along wastewater biotreatments is performed either by the native microbiota or by added microbial inocula. The main aim of this study was to apply two fingerprinting methods, temperature gradient gel electrophoresis (TGGE) and length heterogeneity-PCR (LH-PCR) analysis of 16S rRNA gene fragments, in order to assess the microbiota structure and dynamics during mixed olive oil and winery wastewaters aerobic biotreatment performed in a jet-loop reactor (JLR). Sequence homology analysis showed the presence of bacterial genera Gluconacetobacter, Klebsiella, Lactobacillus, Novosphingobium, Pseudomonas, Prevotella, Ralstonia, Sphingobium and Sphingomonas affiliated with five main phylogenetic groups: alpha-, beta- and gamma-Proteobacteria, Firmicutes and Bacteroidetes. LH-PCR analysis distinguished eight predominant DNA fragments correlated with the samples showing highest performance (COD removal rates of 67 up to 75%). Cluster analysis of both TGGE and LH-PCR fingerprinting profiles established five main clusters, with similarity coefficients higher than 79% (TGGE) and 62% (LH-PCR), and related with hydraulic retention time, indicating that this was the main factor responsible for the shifts in the microbiota structure. Canonical correspondence analysis revealed that changes observed on temperature and O2 level were also responsible for shifts in microbiota composition. Community level metabolic profile analysis was used to test metabolic activities in samples. Integrated data revealed that the microbiota structure corresponds to bacterial groups with high degradative potential and good suitability for this type of effluents biotreatments.

Keywords

Microbiota structure Microbiota dynamics Microbiota diversity TGGE LH-PCR Olive oil wastewater Winery wastewater 

Notes

Acknowledgments

This work was supported by the FCT Project MOTIVE (PPCDT/AMB/56616/2004). Sandra Chaves was a FCT post-doc fellow (BPD/20819/2004). Authors wish to thank José Cardoso Duarte from LNEG (Unidade de Bioenergia) for jet-loop reactor availability.

References

  1. American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC, USAGoogle Scholar
  2. Ayed L, Hamdi M (2003) Fermentative decolorization of olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:59–65. doi:10.1016/S0032-9592(02)00314-X CrossRefGoogle Scholar
  3. Baboshin M, Akimov V, Baskunov B, Born TL, Khan SU, Golovleva L (2008) Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation 19:567–576. doi:10.1007/s10532-007-9162-2 PubMedCrossRefGoogle Scholar
  4. Balestrino D, Ghigo J-M, Charbonnel N, Haagensen JAJ, Forestier C (2008) The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol 10(3):685–701. doi:10.1111/j.1462-2920.2007.01491.x PubMedCrossRefGoogle Scholar
  5. Bernhard AE, Colbert D, McManus J, Field KG (2005) Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiol Ecol 52:115–128. doi:10.1016/j.femsec.2004.10.016 PubMedCrossRefGoogle Scholar
  6. Böltner D, Moreno-Morillas S, Ramos J-L (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7(9):1329–1338. doi:10.1111/j.1462-2920.2005.00820.x PubMedCrossRefGoogle Scholar
  7. Borja R, Rincón B, Raposo F, Alba J, Martín A (2002) A study of anaerobic digestibility of two-phases olive mill solid waste (OMSW) at mesophilic temperature. Process Biochem 38:733–742. doi:10.1016/S0032-9592(02)00202-9 CrossRefGoogle Scholar
  8. Choi KH, Dobbs FC (1999) Comparison of two kinds of biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Meth 36:203–213CrossRefGoogle Scholar
  9. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci UAS 86:2172–2175CrossRefGoogle Scholar
  10. Colin T, Bories A, Sire Y, Perrin R (2005) Treatment and valorisation of winery wastewater by a new biophysical process (ECCF). Water Sci Technol 51(1):99–106PubMedGoogle Scholar
  11. Cunliffe M, Kertesz MA (2006) Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 72:1083–1089. doi:10.1007/s00253-006-0374-x PubMedCrossRefGoogle Scholar
  12. Desai AD, Autenrieth RL, Dimitriou-Christidis P, McDonald JC (2008) Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation 19:223–233. doi:10.1007/s10532-007-9129-3 PubMedCrossRefGoogle Scholar
  13. Di Gioia D, Fava F, Bertin L, Marchetti L (2001) Biodegradation of synthetic and naturally occurring mixtures of mono-cyclic aromatic compounds present in olive mill wastewaters by two aerobic bacteria. Appl Microbiol Biotechnol 55:619–626. doi:10.1007/s002530000554 PubMedCrossRefGoogle Scholar
  14. Díaz E, Stams AJM, Amils R, Sanz JL (2006) Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environl Microbiol 72(7):4942–4949. doi:10.1128/AEM.02985-05 CrossRefGoogle Scholar
  15. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRefGoogle Scholar
  16. Doaré-Lebrun E, El Arbi A, Charlet M, Guérin L, Pernelles J-J, Ogier J-C, Bouix M (2006) Analysis of fungal diversity of grapes by application of temporal temperature gradient gel electrophoresis–potentialities and limits of the method. J Appl Microbiol 101:1340–1350. doi:10.1111/j.1365-2672.2006.03030.x PubMedCrossRefGoogle Scholar
  17. Eichner CA, Erb RW, Timmis KN, Wagner-Dobler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65(1):102–109PubMedGoogle Scholar
  18. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275PubMedCrossRefGoogle Scholar
  19. El Hajjouji H, Bailly JR, Winterton P, Merlina G, Revel JC, Hafidi M (2008) Chemical and spectroscopic analysis of olive mill waste water during a biological treatment. Biores Technol 99:4958–4965. doi:10.1016/j.biortech.2007.09.025 CrossRefGoogle Scholar
  20. Eusébio A, Petruccioli M, Lageiro M, Federici F, Duarte JC (2004) Microbial characterisation of activated sludge in jet-loop bioreactors treating winery wastewaters. J Ind Microbiol Biotechnol 31:29–34. doi:10.1007/s10295-004-0111-3 PubMedCrossRefGoogle Scholar
  21. Eusébio A, Mateus M, Baeta-Hall L, Almeida-Vara E, Duarte JC (2005) Microflora evaluation of two agro-industrial effluents treated by the JACTO jet-loop type reactor system. Water Sci Technol 51(1):107–112PubMedGoogle Scholar
  22. Eusébio A, Mateus M, Baeta-Hall L, Sàágua MC, Tenreiro R, Almeida-Vara E, Duarte JC (2007) Characterization of the microbial communities in jet-loop (JACTO) reactors during aerobic olive oil wastewater treatment. Internat Biodeter Biodegr 59:226–233. doi:10.1016/j.ibiod.2006.11.008 CrossRefGoogle Scholar
  23. Garland JL, Mills AL (1991) Classification of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359PubMedGoogle Scholar
  24. George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2, 4, 6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236. doi:10.1007/s10295-007-0289-2 PubMedCrossRefGoogle Scholar
  25. Guzmán-López O, Loera O, Parada JL, Castillo-Morales A, Martínez-Ramírez C, Augur C, Gaime-Perraud I, Saucedo-Castañeda G (2009) Microcultures of lactic acid bacteria: characterization and selection of strains, optimization of nutrients and gallic acid concentration. J Ind Microbiol Biotechnol 36:11–20. doi:10.1007/s10295-008-0465-z PubMedCrossRefGoogle Scholar
  26. Hamdi M (1993) Future prospects and constraints of olive mill wastewaters use and treatment: a review. Bioproc Eng 8:209–214. doi:10.1007/BF00369831 CrossRefGoogle Scholar
  27. Henriques IS, Alves A, Tacão M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci 68:139–148. doi:10.1016/j.ecss.2006.01.015 CrossRefGoogle Scholar
  28. Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11PubMedCrossRefGoogle Scholar
  29. Ito M, Prokop Z, Klvaka M, Otsubo Y, Tsuda M, Damborský J, Nagata Y (2007) Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 188:313–325. doi:10.1007/s00203-007-0251-8 PubMedCrossRefGoogle Scholar
  30. Kachouri F, Hamdi M (2004) Enhancement of polyphenols in olive oil by contact with fermented olive mill wastewater by Lactobacillus plantarum. Process Biochem 39:841–845. doi:10.1016/S0032-9592(03)00189-4 CrossRefGoogle Scholar
  31. Kiritsakis A, Koutsaftakis A, Stefanoudaki E, Kostopoulou M, Digenakis M, Polymenopoulos Z (2001) Environment pollution by the waste water of olive oil mills: how to eliminate the problem. J Environ Protection Ecol 2(4):869–873Google Scholar
  32. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188. doi:10.1016/j.mimet.2004.04.006 PubMedCrossRefGoogle Scholar
  33. Kolehmainen RE, Tiirola M, Puhakka JA (2008) Spatial and temporal changes in actinobacterial dominance in experimental artificial groundwater recharge. Water Res 42:4525–4537. doi:10.1016/j.watres.2008.07.039 PubMedCrossRefGoogle Scholar
  34. Laconi S, Molle G, Cabiddu A, Pompei R (2007) Bioremediation of olive oil mill wastewater and production of microbial biomass. Biodegradation 18:559–566. doi:10.1007/s10532-006-9087-1 PubMedCrossRefGoogle Scholar
  35. Liu W-T, Chanc O-C, Fang HHP (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36:1767–1775PubMedCrossRefGoogle Scholar
  36. Liu ZP, Wang BJ, Liu YH, Liu SJ (2005) Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Sys Evol Microbiol 55:1229–1232. doi:10.1099/ijs.0.63468-0 CrossRefGoogle Scholar
  37. Ludwig JA, Reynolds JF (1988) Statistical ecology—a primer on computing and methods. John Wiley and Sons, New YorkGoogle Scholar
  38. Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S–23S ribosomal gene sequences and restriction endonuclease analysis (ARDRA). In: Akkeermans ADL, van-Elsas JD, de-Bruijn FJ (eds) Molecular microbial ecology methods. Kluwer Academic Publishing, Boston 3.3. 2: 1–8Google Scholar
  39. Mechichi T, Sayadi S (2005) Evaluating process imbalance of anaerobic digestion of olive mill wastewaters. Proc Biochem 40:139–145. doi:10.1016/j.procbio.2003.11.050 CrossRefGoogle Scholar
  40. Mekki A, Dhouib A, Sayadi S (2006) Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol Res 161:93–101. doi:10.1016/j.micres.2005.06.001 PubMedCrossRefGoogle Scholar
  41. Moura A, Tacão M, Henriques I, Dias J, Ferreira P, Correia A (2009) Characterization of bacterial diversity in two aerated lagoons of a wastewater treatment plant using PCR–DGGE analysis. Microbiol Res 164(5):560–569. doi:10.1016/j.micres.2007.06.005 PubMedCrossRefGoogle Scholar
  42. Muyzer G (1998) Structure, function and dynamics of microbial communities: the molecular biological approach. In: Carvalho GR (ed) Advances in molecular ecology. IOS Press, Amsterdam, Washington, DC, pp 87–117Google Scholar
  43. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322PubMedCrossRefGoogle Scholar
  44. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TCGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141PubMedCrossRefGoogle Scholar
  45. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  46. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808PubMedCrossRefGoogle Scholar
  47. Paixão SM, Santos P, Baeta-Hall L, Tenreiro R, Anselmo AM (2003) Alternative inocula as activated sludge surrogate culture for a toxicity test. Environm Toxicol 18:37–44. doi:10.1002/tox.10099 CrossRefGoogle Scholar
  48. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144CrossRefGoogle Scholar
  49. Piperidou CI, Chaidou CI, Stalikas CD, Soulti K, Pilidis GA, Balis C (2000) Bioremediation of olive oil mill wastewater: chemical alterations induced by Azotobacter vinelandii. J Agric Food Chem 48:1941–1948. doi:10.1021/jf991060v PubMedCrossRefGoogle Scholar
  50. Pozo C, Rodelas B, Martínez-Toledo MV, Vílchez R, González-López J (2007) Removal of organic load from olive washing water by an aerated submerged biofilter and profiling of the bacterial community involved in the process. J Microbiol Biotechnol 17(5):784–791PubMedGoogle Scholar
  51. Rincón B, Raposo F, Borja R, Gonzalez JM, Portillo MC, Saiz-Jiménez C (2006) Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phases olive mill solid wastes at low organic loading rates. J Biotechnol 121:534–543. doi:10.1016/j.jbiotec.2005.08.013 PubMedCrossRefGoogle Scholar
  52. Rincón B, Borja R, Gonzalez JM, Portillo MC, Saiz-Jiménez C (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J 40:253–261. doi:10.1016/j.bej.2007.12.019 CrossRefGoogle Scholar
  53. Ritchie NJ, Schutter ME, Dick RP, Myrold DD (2000) Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl Environ Microbiol 66(4):1668–1675PubMedCrossRefGoogle Scholar
  54. Rizzi A, Zucchi M, Borin S, Marzorati M, Sorlini C, Daffonchio D (2006) Response of methanogen populations to organic load increase during anaerobic digestion of olive mill wastewater. J Chem Technol Biotechnol 81:1556–1562. doi:10.1002/jctb.1558 CrossRefGoogle Scholar
  55. Saikaly PE, Oerther DB (2004) Bacterial competition in activated sludge: theoretical analysis of varying solids retention times on diversity. Microb Ecol 48:274–284. doi:10.1007/s00248-003-1027-6 PubMedCrossRefGoogle Scholar
  56. Sevilla M, Gunapala N, Burris RH, Kennedy C (2001) Enhancement of growth and N content in sugarcane plants inoculated with Acetobacter diazotrophicus. Mol Plant Microbe Interact 14:358–366PubMedCrossRefGoogle Scholar
  57. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, IL, USAGoogle Scholar
  58. Smalla K, Tebbe CC, van Elsas JD, Vogel TM (2008) Microbial community networks. FEMS Microbiol Ecol 66:1–2. doi:10.1111/j.1574-6941.2008.00596.x PubMedCrossRefGoogle Scholar
  59. Sousa DZ, Pereira MA, Stams AJM, Alves MM, Smidt H (2007) Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol 73(4):1054–1064. doi:10.1128/AEM.01723-06 PubMedCrossRefGoogle Scholar
  60. Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811. doi:10.1007/s00253-008-1752-3 PubMedCrossRefGoogle Scholar
  61. Talbot G, Topp E, Palin MF, Massé DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537. doi:10.1016/j.watres.2007.08.003 PubMedCrossRefGoogle Scholar
  62. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289CrossRefGoogle Scholar
  63. Tiirola MA, Männistö MK, Puhakka JA, Kulomaa MS (2002) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68(1):173–180PubMedCrossRefGoogle Scholar
  64. Tiirola MA, Suvilampi JE, Kulomaa MS, Rintala JA (2003) Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR). Water Res 37:2259–2269. doi:10.1016/S0043-1354(02)00631-0 PubMedCrossRefGoogle Scholar
  65. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4(12):779–781PubMedCrossRefGoogle Scholar
  66. Tombolini R, Unge A, Davey ME, de Bruijn FJ, Jansson JK (1997) Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol 22:17–28CrossRefGoogle Scholar
  67. Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Pérez-Pantoja D, Sánchez MA, Stuardo M, González B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6(7):655–668. doi:10.1111/j.1462-2920.2004.00596.x PubMedCrossRefGoogle Scholar
  68. Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Biores Technol 84:251–257. doi:10.1016/S0960-8524(02)00043-3 CrossRefGoogle Scholar
  69. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011. doi:10.1111/j.1462-2920.2006.01080.x PubMedCrossRefGoogle Scholar
  70. Wang J, Ma T, Zhao L, Lv J, Li G, Zhang H, Zhao B, Liang F, Liu R (2008) Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. J Ind Microbiol Biotechnol 35:619–628. doi:10.1007/s10295-008-0326-9 PubMedCrossRefGoogle Scholar
  71. Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64(11):4396–4402PubMedGoogle Scholar
  72. Watanabe K, Futamata H, Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie van Leeuwenhoek 81:655–663PubMedCrossRefGoogle Scholar
  73. White DC, Suttont SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Op Biotechnol 7:301–306CrossRefGoogle Scholar
  74. Whiteley AS, Wiles S, Lilley AK, Philp J, Bailey MJ (2001) Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J Microbiol Methods 44:79–88PubMedCrossRefGoogle Scholar
  75. Zhong Y, Luan T, Wang X, Lan C, Tam NFY (2007) Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75:175–186. doi:10.1007/s00253-006-0789-4 PubMedCrossRefGoogle Scholar
  76. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ana Eusébio
    • 1
    • 2
  • Marta Tacão
    • 1
  • Sandra Chaves
    • 3
  • Rogério Tenreiro
    • 3
  • Elsa Almeida-Vara
    • 2
  1. 1.LNEG, Unidade de Bioenergia, Estrada do Paço do LumiarLisbonPortugal
  2. 2.Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), FCLLisbonPortugal
  3. 3.Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Edifício ICATLisbonPortugal

Personalised recommendations