, Volume 22, Issue 3, pp 565–572 | Cite as

Evaluation of different lignocellulosic substrates for the production of cellulases and xylanases by the basidiomycete fungi Bjerkandera adusta and Pycnoporus sanguineus

  • Rosa Estela Quiroz-Castañeda
  • Nancy Pérez-Mejía
  • Claudia Martínez-Anaya
  • Lourdes Acosta-Urdapilleta
  • Jorge Folch-MallolEmail author
Original Paper


Agricultural waste products are potential resources for the production of a number of industrial compounds, including biofuels. Basidiomycete fungi display a battery of hydrolytic enzymes with prospective use in lignocellulosic biomass transformation, however little work has been done regarding the characterization of such activities. Growth in several lignocellulosic substrates (oak and cedar sawdust, rice husk, corn stubble, wheat straw and Jatropha seed husk) and the production of cellulases and xylanases by two basidiomycete fungi: Bjerkandera adusta and Pycnoporus sanguineus were analyzed. Growth for P. sanguineus was best in rice husk while corn stubble supported the highest growth rate for B. adusta. Among the substrates tested, cedar sawdust produced the highest cellulolytic activities in both fungal species, followed by oak sawdust and wheat straw. Xylanolytic activity was best in oak and cedar sawdust for both species. We found no correlation between growth and enzyme production. Zymogram analysis of xylanases and cellulases showed that growth in different substrates produced particular combinations of protein bands with hydrolytic activity.


Lignocellulose Cellulases Xylanases Biofuels 



We are grateful to Jorge Martínez Herrera for providing Jatropha curcas seed husk. We are indebted with Chris Wood for his critical reading of this manuscript. This work was funded by CONACyT grant 48256Z and grant 13/2007 from UAM-Cuajimalpa. R.E. Q.-C. received a CONACyT scholarship (no. 47895) and N. P.-M. a CONACyT-FOMIX 93760 scholarship. CONACyT also provided a postdoctoral fellowship to C. M-A (Exp. no. 050272).


  1. Alborés S, Pianzzola MJ, Soubes M, Cerdeiras M (2006) Biodegradation of agroindustrial wastes by Pleurotus spp for its use as ruminant feed. Electron J Biotechnol 9:215–220CrossRefGoogle Scholar
  2. Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521PubMedCrossRefGoogle Scholar
  3. Betts WB, Dart RK, Ball AS, Pedlar SL (1991) Biosynthesis and structure of lignocellulose. In: Betts WB (ed) Biodegradation: natural and synthetic materials. Springer-Verlag, Berlin, pp 139–155Google Scholar
  4. Bhattacharjee B, Roy A, Majumder AL (1993) Carboxymethylcellulase from Lenzites saepiaria, a brown-rotter. Biochem Mol Biol Int 30:1143–1152PubMedGoogle Scholar
  5. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  6. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23PubMedCrossRefGoogle Scholar
  7. Dantan-Gonzalez E, Martinez-Anaya C, Mendez-Sanchez M, Gonzalez MC, Palomares LA, Folch-Mallol J (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol 11:163–169PubMedGoogle Scholar
  8. Elisashvili V, Kachlishvili E (2009) Physiological regulation of laccase and manganese peroxidase production by white-rot basidiomycetes. J Biotechnol 144:37–42PubMedCrossRefGoogle Scholar
  9. Department of energy, USA.
  10. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18PubMedCrossRefGoogle Scholar
  11. Inglis GD, Popp AP, Selinger LB, Kawchuk LM, Gaudet DA, McAllister TA (2000) Production of cellulases and xylanases by low-temperature basidiomycetes. Can J Microbiol 46:860–865PubMedCrossRefGoogle Scholar
  12. Lee YE, Lowe SE, Zeikus JG (1993) Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl Environ Microbiol 59:763–771PubMedGoogle Scholar
  13. Liang Y, Siddaramu T, Yesuf J, Sarkany N (2010) Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol 101:6417–6424PubMedCrossRefGoogle Scholar
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  15. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martinez MJ, Gutierrez A, del Rio JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  16. Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58:1816–1822PubMedGoogle Scholar
  17. McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324Google Scholar
  18. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  19. Nagle NJ, Elander RT, Newman MM, Rohrback BT, Ruiz RO, Torget RW (2002) Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production. Biotechnol Prog 18:734–738PubMedCrossRefGoogle Scholar
  20. Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576PubMedCrossRefGoogle Scholar
  21. Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7PubMedCrossRefGoogle Scholar
  22. Perez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedCrossRefGoogle Scholar
  23. Quiroz-Castañeda RE, Balcázar-López E, Dantán-González E, Martinez A, Folch-Mallol JL, Martínez-Anaya C (2009) Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electron J Biotechnol 12:1–8Google Scholar
  24. Sadana J, Lachkea H, Patilr V (1984) Endo-(1,4)-glucanase from Scleroriuni rolfsii. Purification, substrate specificity and mode of action. Carbohydr Res 133:297–312CrossRefGoogle Scholar
  25. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  26. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194PubMedCrossRefGoogle Scholar
  27. Soderstrom J, Pilcher L, Galbe M, Zacchi G (2002) Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol 98–100:5–21PubMedCrossRefGoogle Scholar
  28. Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32:283–289PubMedCrossRefGoogle Scholar
  29. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  30. Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 49:675–682PubMedCrossRefGoogle Scholar
  31. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Rosa Estela Quiroz-Castañeda
    • 1
    • 2
  • Nancy Pérez-Mejía
    • 3
  • Claudia Martínez-Anaya
    • 1
  • Lourdes Acosta-Urdapilleta
    • 4
  • Jorge Folch-Mallol
    • 2
    Email author
  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Laboratorio de Biología Molecular de Hongos, Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
  3. 3.Facultad de Ciencias BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
  4. 4.Centro de Investigaciones BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico

Personalised recommendations