, Volume 22, Issue 2, pp 463–474 | Cite as

A kinetic analysis of three modified novel nitroreductases

  • Christopher D. Gwenin
  • Maher Kalaji
  • Peter A. Williams
  • Catherine M. Kay
Original Paper


A kinetic comparison between three nitroreductase enzymes isolated from the genome of Bacillus licheniformis ATCC 14580 for prospective use as immobilised enzymes for explosives detection has been conducted. The genes encoding the three enzymes (yfkO [BLNfnB] encoding an NfsB-like enzyme; nfrA [BLNfrA1] and ycnD [BLNfrA2] encoding PnrA-like enzymes) have been PCR amplified from the native genome and cloned into pET-28a(+) and a modified cysteine(6)-tagged pET-28a(+) and subsequently over-expressed, purified, and biochemically characterised. The previously uncharacterised nitroreductases exhibited activity against a wide range of explosives, including cyclic nitramines. Amino acid alignments and overall structural comparisons with other nitroreductase family members suggest that the B. licheniformis enzymes are members of the NfsA-Frp/NfsB-FRase I family group. Despite the overall low amino acid identity, regions for flavin mononucleotide binding and active site residues were highly conserved.


Bacillus licheniformis Nitroreductase Explosives 



The authors wish to acknowledge funding from Trwyn and Nanosecure an EU project.


  1. Berne C, Betancor L, Luckarift HR, Spain JC (2006) Application of a microfluidic reactor for screening cancer prodrug activation using silica-immobilized nitrobenzene nitroreductase. Biomacromolecules 7:2631–2636PubMedCrossRefGoogle Scholar
  2. Blehert DS, Fox BG, Chambliss GH (1999) Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 181:6254–6263PubMedGoogle Scholar
  3. Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125PubMedGoogle Scholar
  4. Bryant DW, McCalla DR, Leeksma M, Laneuville P (1981) Type I nitroreductases of Escherichia coli. Can J Microbiol 27:81–86PubMedCrossRefGoogle Scholar
  5. Bryant C, Hubbard L, McElroy WD (1991) Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae. J Biol Chem 266:4126–4130PubMedGoogle Scholar
  6. Caballero A, Lazaro JJ, Ramos JL, Esteve-Nunez A (2005) PnrA a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7(8):1211–1219PubMedCrossRefGoogle Scholar
  7. Gonzalez-Perez M, van Dillewijn MP, Wittich RM, Ramos JL (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9:1535–1540PubMedCrossRefGoogle Scholar
  8. Gwenin CD, Kalaji M, Williams PA, Jones RM (2007) The orientationally controlled assembly of genetically modified enzymes in an amperometric biosensor. Biosens Bioelectron 22:2869–2875PubMedCrossRefGoogle Scholar
  9. Gwenin CD, Kalaji M, Kay CM, Williams PA, Tito DN (2008) An in situ amperometric biosensor for the detection of vapours from explosive compounds. Analyst 133:621–625PubMedCrossRefGoogle Scholar
  10. Kobori T, Sasaki H, Lee WC, Zenno S, Saigo K, Murphy MEP, Tanokura M (2001) Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds. Alteration of pyrimidine nucleotide binding by a single amino acid substitution. J Biol Chem 276:2816–2823PubMedCrossRefGoogle Scholar
  11. Larkin M, Blackshields AG, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Sequence analysis. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  12. Lee B-U, Park S-C, Cho Y-S, Kahng H-Y, Oh K-H (2008) Expression and characterization of the TNT nitroreductase of Pseudomonas sp. HK-6 in Escherichia coli. Curr Microbiol 56:386–390PubMedCrossRefGoogle Scholar
  13. Parkinson GN, Skelly JV, Neidle S (2000) Crystal structure of FMN-dependent nitroreductase from Escherichia coli B: a prodrug activating enzyme. J Med Chem 43:3624–3631PubMedCrossRefGoogle Scholar
  14. Peterson FJ, Mason RP, Hovsepian J, Holtzman JL (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254:4009–4014PubMedGoogle Scholar
  15. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:R77PubMedCrossRefGoogle Scholar
  16. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  17. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771PubMedCrossRefGoogle Scholar
  18. Watanabe M, Ishidate M Jr, Nohmi T (1990) Nucleotide sequence of Salmonella typhimurimum nitroreductase gene. Nucleic Acids Res 18:1059PubMedCrossRefGoogle Scholar
  19. Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180:5529–5539PubMedGoogle Scholar
  20. Williams PA, Zaba BN (1997) EnzPack for Windows. Biosoft, Cambridge, UKGoogle Scholar
  21. Zenno S, Saigo K, Kanoh H, Inouye S (1994) Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacteria Vibrio fischeri ATCC 7744. J Bacteriol 176:3536–3543PubMedGoogle Scholar
  22. Zenno S, Koike H, Tanokura M, Saigo K (1996a) Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri. J Biochem 120:736–744PubMedGoogle Scholar
  23. Zenno S, Koike H, Kumar AN, Jayaraman R, Tanokura M, Saigo K (1996b) Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol 178:4508–4514PubMedGoogle Scholar
  24. Zenno S, Koike H, Tanokura M, Saigo K (1996c) Conversion of NfsB, a minor Escherichia coli nitroreductase, to a flavin reductase similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri, by a single amino acid substitution. J Bacteriol 178:4731–4733PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christopher D. Gwenin
    • 1
  • Maher Kalaji
    • 1
  • Peter A. Williams
    • 1
  • Catherine M. Kay
    • 1
  1. 1.School of ChemistryBangor UniversityGwyneddUnited Kingdom

Personalised recommendations